Adaptive example-based super-resolution using kernel PCA with a novel classification approach

EURASIP Journal on Advances in Signal Processing - Tập 2011 - Trang 1-29 - 2011
Takahiro Ogawa1, Miki Haseyama1
1Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

Tóm tắt

An adaptive example-based super-resolution (SR) using kernel principal component analysis (PCA) with a novel classification approach is presented in this paper. In order to enable estimation of missing high-frequency components for each kind of texture in target low-resolution (LR) images, the proposed method performs clustering of high-resolution (HR) patches clipped from training HR images in advance. Based on two nonlinear eigenspaces, respectively, generated from HR patches and their corresponding low-frequency components in each cluster, an inverse map, which can estimate missing high-frequency components from only the known low-frequency components, is derived. Furthermore, by monitoring errors caused in the above estimation process, the proposed method enables adaptive selection of the optimal cluster for each target local patch, and this corresponds to the novel classification approach in our method. Then, by combining the above two approaches, the proposed method can adaptively estimate the missing high-frequency components, and successful reconstruction of the HR image is realized.

Tài liệu tham khảo

Park SC, Park MK, Kang MG: Super-resolution image reconstruction: A technical overview. IEEE Signal Proces Mag 2003,20(3):21-36. 10.1109/MSP.2003.1203207

Keys R: Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Proces 1981,29(6):1153-1160. 10.1109/TASSP.1981.1163711

Oppenheim AV, Schafer RW: Discrete-Time Signal Processing. 2nd edition. Prentice Hall, New Jersey; 1999.

Farsiu S, Robinson D, Elad M, Milanfar P: Advances and challenges in super-resolution. Int J Imaging Syst Technol 2004,14(2):47-57. 10.1002/ima.20007

Jiji CV, Chaudhuri S, Chatterjee P: Single frame image super-resolution: should we process locally or globally? Multidimens Syst Signal Process 2007,18(2-3):123-125. 10.1007/s11045-007-0024-1

Hertzmann A, Jacobs CE, Oliver BC N, Salesin DH: Image analogies. Comput Graph (Proc Siggraph) 2001, 2001: 327-340.

Freeman WT, Jones TR, Pasztor EC: Example-based super-resolution. IEEE Comput Graph Appl 2002,22(2):56-65. 10.1109/38.988747

Jiji CV, Joshi MV, Chaudhuri S: Single-frame image super-resolution using learned wavelet coefficients. Int J Imaging Syst Technol 2004,14(3):105-112. 10.1002/ima.20013

Wang X, Trang X: Hallucinating face by eigentransformation. IEEE Trans Syst Man Cybern 2005,35(3):425-434. 10.1109/TSMCC.2005.848171

Schölkopf B, Smola A, Müller KR: Nonlinear principal component analysis as a kernel eigen value problem. Neural Comput 1998, 10: 1299-1319. 10.1162/089976698300017467

Schölkoph B, Mika S, Burges C, Knirsch P, Müller KR, Rätsch G, Smola A: Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw 1999,10(5):1000-1017. 10.1109/72.788641

Turk M, Pentland A: Eigenfaces for recognition. J Cogn Neurosci 1991, 3: 71-86. 10.1162/jocn.1991.3.1.71

Kwok JTY, Tsang IWH: The pre-image problem in kernel methods. IEEE Trans Neural Netw 2004,15(6):1517-1525. 10.1109/TNN.2004.837781

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP: Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004,13(4):600-612. 10.1109/TIP.2003.819861