Accurate depth image generation via overfit training of point cloud registration using local frame sets
Tài liệu tham khảo
Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song, S., Zeng, A., Zhang, Y., 2017. Matterport3D: Learning from RGB-D Data in Indoor Environments. In: International Conference on 3D Vision (3DV).
Frome, 2004, Recognizing objects in range data using regional point descriptors, 224
Kadam, 2021
Mian, 2006, Three-dimensional model-based object recognition and segmentation in cluttered scenes, IEEE Trans. Pattern Anal. Mach. Intell., 28, 1584, 10.1109/TPAMI.2006.213
Planche, 2017, Depthsynth: Real-time realistic synthetic data generation from cad models for 2.5 d recognition, 1
Ravi, 2020
Rusu, 2009, Fast point feature histograms (FPFH) for 3D registration, 3212
Schops, T., Sattler, T., Pollefeys, M., 2019. Bad slam: Bundle adjusted direct rgb-d slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 134–144.
Silberman, 2012, Indoor segmentation and support inference from rgbd images, 746
Wang, 2020
Zhang, 2014, Rolling guidance filter, 815