A novel method for the fabrication of a high-density carbon nanotube microelectrode array

Sensing and Bio-Sensing Research - Tập 5 - Trang 1-7 - 2015
Adam Khalifa1, Zhaoli Gao2, Amine Bermak1, Yi Wang3, Leanne Lai Hang Chan3
1Department of Electrical and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
2Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong, China
3Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

Tài liệu tham khảo

M.S. Humayun, J.D. Dorn, A.K. Ahuja, A. Caspi, E. Filley, G. Dagnelie, J. Salzmann, A. Santos, J. Duncan, L. DaCruz, Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study, in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 4566–4568.

Roessler, 2009, Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial, Invest. Ophthalmol. Vis. Sci., 50, 3003, 10.1167/iovs.08-2752

Feucht, 2005, Development of an epiretinal prosthesis for stimulation of the human retina, Ophthalmologe, 102, 688, 10.1007/s00347-005-1186-6

D.C. Rodger, W. Li, A.J. Fong, H. Ameri, E. Meng, J.W. Burdick, R.R. Roy, V.R. Edgerton, J.D. Weiland, M.S. Humayun, Flexible microfabricated parylene multielectrode arrays for retinal stimulation and spinal cord field modulation, in: IEEE Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, Okinawa, 2006.

Nayagam, 2011, Biocompatibility of immobilized aligned carbon nanotubes, Small, 7, 1035, 10.1002/smll.201002083

Yang, 2007, Carbon nanotubes for biological and biomedical applications, Nanotechnology, 18, 412001, 10.1088/0957-4484/18/41/412001

Sun, 2010, The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures, Nanotechnology, 21, 045201, 10.1088/0957-4484/21/4/045201

Nessim, 2010, The critical role of the underlayer material and thickness in growing vertically aligned carbon nanotubes and nanofibers on metallic substrates by chemical vapor deposition, Adv. Funct. Mater., 20, 1306, 10.1002/adfm.200902265

Dixit, 2012, Fabrication and electrical characterization of high aspect ratio poly-silicon filled through-silicon vias, J. Micromech. Microeng., 22, 055021, 10.1088/0960-1317/22/5/055021

Sohn, 1998, Iron-induced cytotoxicity in cultured rat retinal neurons, Korean J. Ophthalmol., 12, 77, 10.3341/kjo.1998.12.2.77

Rao, 1997, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187, 10.1126/science.275.5297.187

Eick, 2009, Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures, Front. Neuroeng., 2, 16, 10.3389/neuro.16.016.2009

Wang, 2006, Neural stimulation with a carbon nanotube microelectrode array, Nano Lett., 6, 2043, 10.1021/nl061241t

Nguyen-Vu, 2006, Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces, Small, 2, 89, 10.1002/smll.200500175

Jiang, 2011, Carbon nanotube yarns for deep brain stimulation electrode, IEEE Transact. Neural Syst. Rehabil. Eng., 19, 612, 10.1109/TNSRE.2011.2165733

Chen, 2010, Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes, Nanotechnology, 21, 485501, 10.1088/0957-4484/21/48/485501