A novel method for the fabrication of a high-density carbon nanotube microelectrode array
Tài liệu tham khảo
M.S. Humayun, J.D. Dorn, A.K. Ahuja, A. Caspi, E. Filley, G. Dagnelie, J. Salzmann, A. Santos, J. Duncan, L. DaCruz, Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study, in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 4566–4568.
Roessler, 2009, Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial, Invest. Ophthalmol. Vis. Sci., 50, 3003, 10.1167/iovs.08-2752
Feucht, 2005, Development of an epiretinal prosthesis for stimulation of the human retina, Ophthalmologe, 102, 688, 10.1007/s00347-005-1186-6
D.C. Rodger, W. Li, A.J. Fong, H. Ameri, E. Meng, J.W. Burdick, R.R. Roy, V.R. Edgerton, J.D. Weiland, M.S. Humayun, Flexible microfabricated parylene multielectrode arrays for retinal stimulation and spinal cord field modulation, in: IEEE Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, Okinawa, 2006.
Nayagam, 2011, Biocompatibility of immobilized aligned carbon nanotubes, Small, 7, 1035, 10.1002/smll.201002083
Yang, 2007, Carbon nanotubes for biological and biomedical applications, Nanotechnology, 18, 412001, 10.1088/0957-4484/18/41/412001
Sun, 2010, The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures, Nanotechnology, 21, 045201, 10.1088/0957-4484/21/4/045201
Nessim, 2010, The critical role of the underlayer material and thickness in growing vertically aligned carbon nanotubes and nanofibers on metallic substrates by chemical vapor deposition, Adv. Funct. Mater., 20, 1306, 10.1002/adfm.200902265
Dixit, 2012, Fabrication and electrical characterization of high aspect ratio poly-silicon filled through-silicon vias, J. Micromech. Microeng., 22, 055021, 10.1088/0960-1317/22/5/055021
Sohn, 1998, Iron-induced cytotoxicity in cultured rat retinal neurons, Korean J. Ophthalmol., 12, 77, 10.3341/kjo.1998.12.2.77
Rao, 1997, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187, 10.1126/science.275.5297.187
Eick, 2009, Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures, Front. Neuroeng., 2, 16, 10.3389/neuro.16.016.2009
Wang, 2006, Neural stimulation with a carbon nanotube microelectrode array, Nano Lett., 6, 2043, 10.1021/nl061241t
Nguyen-Vu, 2006, Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces, Small, 2, 89, 10.1002/smll.200500175
Jiang, 2011, Carbon nanotube yarns for deep brain stimulation electrode, IEEE Transact. Neural Syst. Rehabil. Eng., 19, 612, 10.1109/TNSRE.2011.2165733