A mechanistic–statistical species distribution model to explain and forecast wolf (Canis lupus) colonization in South-Eastern France
Tài liệu tham khảo
Araújo, 2006, Five (or so) challenges for species distribution modelling, J. Biogeogr., 33, 1677, 10.1111/j.1365-2699.2006.01584.x
Chapron, 2014, Recovery of large carnivores in Europe’s modern human-dominated landscapes, Science, 346, 1517, 10.1126/science.1257553
Chow, 2003, Lattice dynamical systems, 1
Ciucci, 2009, Long-distance dispersal of a rescued wolf from the northern apennines to the western alps, J. Wildl. Manage., 73, 1300, 10.2193/2008-510
Corsi, 1999, A large-scale model of wolf distribution in Italy for conservation planning, Conserv. Biol., 13, 150, 10.1046/j.1523-1739.1999.97269.x
Darmon, 2012, Spatial distribution and habitat selection in coexisting species of mountain ungulates, Ecography, 35, 44, 10.1111/j.1600-0587.2011.06664.x
Dickie, 2017, Faster and farther: wolf movement on linear features and implications for hunting behaviour, J. Appl. Ecol., 54, 253, 10.1111/1365-2664.12732
Dietze, 2017
Dietze, 2019, Forecasting a bright future for ecology, Front. Ecol. Environ., 17, 3, 10.1002/fee.1994
Dietze, 2018, Iterative near-term ecological forecasting: Needs, opportunities, and challenges, Proc. Natl. Acad. Sci., 115, 1424, 10.1073/pnas.1710231115
Elith, 2009, Species distribution models: Ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40, 677, 10.1146/annurev.ecolsys.110308.120159
Falcucci, 2013, Modeling the potential distribution for a range-expanding species: Wolf recolonization of the Alpine range, Biol. Cons., 158, 63, 10.1016/j.biocon.2012.08.029
Gauthier, 2016, Partitioning prediction uncertainty in climate-dependent population models, Proc. R. Soc. B, 283, 10.1098/rspb.2016.2353
Gelman, 2011, Inference from simulations and monitoring convergence, 163
Gneiting, 2014, Probabilistic forecasting, Annu. Rev. Stat. Appl., 1, 125, 10.1146/annurev-statistics-062713-085831
Guillera-arroita, 2015, Is my species distribution model fit for purpose? matching data and models to applications, Global Ecol. Biogeogr., 24, 276, 10.1111/geb.12268
Guisan, 2005, Predicting species distribution: offering more than simple habitat models, Ecol. Lett., 8, 993, 10.1111/j.1461-0248.2005.00792.x
Hefley, 2017, Dynamic spatio-temporal models for spatial data, Spat. Stat., 20, 206, 10.1016/j.spasta.2017.02.005
Hefley, 2017, When mechanism matters: Bayesian forecasting using models of ecological diffusion, Ecol. Lett., 20, 640, 10.1111/ele.12763
Hobbs, 2015
Hooten, 2019
Houlahan, 2017, The priority of prediction in ecological understanding, Oikos, 126, 1, 10.1111/oik.03726
Jeschke, 2006, Determinants of vertebrate invasion success in Europe and North America, Global Change Biol., 12, 1608, 10.1111/j.1365-2486.2006.01213.x
Kaczensky, 2012
Kelling, 2019, Using semistructured surveys to improve citizen science data for monitoring Biodiversity, BioScience, 69, 170, 10.1093/biosci/biz010
Kéry, 2011, Towards the modelling of true species distributions, J. Biogeogr., 38, 617, 10.1111/j.1365-2699.2011.02487.x
Kéry, 2013, Analysing and mapping species range dynamics using occupancy models, J. Biogeogr., 40, 1463, 10.1111/jbi.12087
Kéry, 2011
Koontz, 2017
Koshkina, 2017, Integrated species distribution models: combining presence-background data and site-occupany data with imperfect detection, Methods Ecol. Evol., 8, 420, 10.1111/2041-210X.12738
Lahoz-Monfort, 2014, Imperfect detection impacts the performance of species distribution models, Global Ecol. Biogeogr., 23, 504, 10.1111/geb.12138
Louvrier, 2018, Mapping and explaining wolf recolonization in France using dynamic occupancy models and opportunistic data, Ecography, 41, 647, 10.1111/ecog.02874
Lunn, 2010
MacKenzie, 2006, Modeling the probability of resource use: The effect of, and dealing with, detecting a species imperfectly, J. Wildl. Manage., 70, 367, 10.2193/0022-541X(2006)70[367:MTPORU]2.0.CO;2
Marescot, 2013, Complex decisions made simple: a primer on stochastic dynamic programming, Methods Ecol. Evol., 4, 872, 10.1111/2041-210X.12082
Maris, 2018, Prediction in ecology: promises, obstacles and clarifications, Oikos, 127, 171, 10.1111/oik.04655
Marucco, 2010, Predicting spatio-temporal recolonization of large carnivore populations and livestock depredation risk : wolves in the Italian Alps, J. Appl. Ecol., 47, 789, 10.1111/j.1365-2664.2010.01831.x
Mech, 2010
Morin, 2009, Comparing Niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change, Ecology, 90, 1301, 10.1890/08-0134.1
Mouquet, 2015, Predictive ecology in a changing world, J. Appl. Ecol., 52, 1293, 10.1111/1365-2664.12482
Newton, 2017, Compensatory selection for roads over natural linear features by wolves in northern Ontario: implications for caribou conservation, PloS one, 12, 10.1371/journal.pone.0186525
Petzold, 1983, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat. Comput., 4, 136, 10.1137/0904010
Potts, 2014, How do animal territories form and change? Lessons from 20 years of mechanistic modelling, Proc. R. Soc. B, 281, 10.1098/rspb.2014.0231
Rey, 2018
Ricciardi, 2007, Are modern biological invasions an unprecedented form of global change?, Conserv. Biol., 21, 329, 10.1111/j.1523-1739.2006.00615.x
Roques, 2016, Modelling population dynamics in realistic landscapes with linear elements: A mechanistic-statistical reaction-diffusion approach, PLOS ONE, 11, 10.1371/journal.pone.0151217
Royle, 2003, Estimating abundance from repeated presence-absence data or point counts, Ecology, 84, 777, 10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
Sakai, 2001, The population biology of invasive species, Annu. Rev. Ecol. Syst., 32, 305, 10.1146/annurev.ecolsys.32.081501.114037
Schiesser, 1991
Schmeller, 2009, Ventajas del monitoreo de biodiversidad basado en voluntarios en Europa, Conserv. Biol., 23, 307, 10.1111/j.1523-1739.2008.01125.x
Turchin, 1998
Valière, 2003, Long-distance wolf recolonization of France and switzerland inferred from non-invasive genetic sampling over a period of 10 years, Animal Conserv., 6, 83, 10.1017/S1367943003003111
Van Strien, 2013, Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models, J. Appl. Ecol., 50, 1450, 10.1111/1365-2664.12158
White, 1996, Analysis of frequency count data using the negative binomial distribution, Ecology, 77, 2549, 10.2307/2265753
Whittington, 2005, Spatial responses of wolves to roads and trails in mountain valleys, Ecol. Appl., 15, 543, 10.1890/03-5317
Wikle, 2003, Hierarchical bayesian models for predicting the spread of ecological processes, Ecology, 84, 1382, 10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2
Wikle, 1998, Hierarchical Bayesian space–time models, Environ. Ecol. Stat., 5, 117, 10.1023/A:1009662704779
Wikle, 2010, A general science-based framework for dynamical spatio-temporal models, Test, 19, 417, 10.1007/s11749-010-0209-z
Williams, 2019, The rise of an apex predator following deglaciation, Divers. Distrib., 25, 895, 10.1111/ddi.12908
Williams, 2018, Monitoring dynamic spatio-temporal ecological processes optimally, Ecology, 99, 524, 10.1002/ecy.2120
Williams, 2017, An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics, Ecology, 98, 328, 10.1002/ecy.1643