Parameter estimation for reaction‐diffusion models of biological invasions

Samuel Soubeyrand1, Lionel Roques1
1INRA, UR546 Biostatistics and Spatial Processes, 84914 Avignon, France

Tóm tắt

AbstractIn this note, we discuss parameter estimation for population models based on partial differential equations (PDEs). Parametric estimation is first considered in the perspective of inverse problems (i.e., when the observation of the solution of a PDE is exactly observed or noise‐free). Then, adopting the point of view of statistics, we turn to parametric estimation for PDEs using more realistic noisy measurements. The approach that we describe uses mechanistic‐statistical models which combine (1) a PDE‐based submodel describing the dynamic under study and (2) a stochastic submodel describing the observation process. This Note is expected to contribute to bridge the gap between modelers using PDEs and population ecologists collecting and analyzing spatio‐temporal data.

Từ khóa


Tài liệu tham khảo

10.1029/2002JD002865

10.1007/s10260-007-0077-1

10.1016/j.ecolmodel.2003.08.002

Campbell EP, 2004, Tech Rep 49

10.2307/2682801

Choulli M, 2009, Une introduction aux probl'emes inverses elliptiques et paraboliques, 10.1007/978-3-642-02460-3

Cressie N, 2011, Statistics for spatio‐temporal data

Dacunha‐Castelle D, 1982, Probèlmes à Temps Mobile

10.1126/science.1236536

10.1090/gsm/019

10.1007/978-3-642-03711-5

Hadamard J, 1923, Lectures on Cauchy's problem in linear partial differential equations

10.1016/S0304-3800(97)01947-9

10.1073/pnas.0603181103

10.1090/surv/034

Jones E, 2010, A Bayesian approach to state and parameter estimation in a Phytoplankton‐Zooplankton model, Aust Meteorol Ocean, 59, 7, 10.22499/2.5901.003

Marin J‐M, 2007, Bayesian core: a practical approach to computational Bayesian statistics

10.1007/b98868

Okubo A, 2002, Diffusion and ecological problems—modern perspectives

10.1111/j.1467-9868.2007.00610.x

10.1016/j.ecolmodel.2004.05.011

10.1007/978-1-4757-3071-5

10.1088/0951-7715/23/3/014

10.1016/j.jtbi.2011.01.006

10.1017/CBO9780511755453

Serfling RJ, 2002, Approximation theorems of mathematical statistics

Shigesada N, 1997, Oxford Series in Ecology and Evolution

10.1086/603624

10.1007/s11538-008-9363-9

Tong H, 1990, Non‐linear time series: a dynamical system approach

Turchin P, 1998, Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants

10.1890/0012-9658(2003)084[1382:HBMFPT]2.0.CO;2

10.1111/j.1751-5823.2003.tb00192.x

10.1016/j.physd.2006.09.017