A high-performance S-TENG based on the synergistic effect of keratin and calcium chloride for finger activity tracking
Tài liệu tham khảo
R.Y. Yin, D.P. Wang, S.F. Zhao, Z. Lou, G.Z. Shen, Wearable sensors-enabled human-machine interaction systems: from design to application, Adv. Funct. Mater., 31 (11), 2008936, https://doi.org/10.1002/adfm.202008936.
J. Bergstrom, K. Hornbaek, Human-computer interaction on the skin, Acm Comput. Surv., 52 (4), 1–14, https://doi.org/10.1145/3332166.
H. Heidari, Electronic skins with a global attraction, Nat. Electron., 1 (11), 578–579, https://doi.org/10.1038/s41928–018-0165–2.
S.J. Zheng, W.Z. Li, Y.Y. Ren, Z.Y. Liu, X.Y. Zou, Y. Hu, J.N. Guo, Z. Sun, F. Yan, Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes, Adv. Mater., 34 (4), 2106570, https://doi.org/10.1002/adma.202106570.
S.Y. Zhang, S.B. Li, Z.Z.L. Xia, K.Y. Cai, A review of electronic skin: soft electronics and sensors for human health, J. Mat. Chem. B, 8 (5), 852–862, https://doi-org.ezproxy.cityu.edu.hk/10.1039/C9TB02531F.
J.J. Kim, Y. Wang, H.Y. Wang, S. Lee, T. Yokota, T. Someya, Skin electronics: next-generation device platform for virtual and augmented reality, Adv. Funct. Mater., 31 (39), 2009602, https://doi.org/10.1002/adfm.202009602.
H.C. Yao, T. Sun, J.S. Chiam, M. Tan, K.Y. Ho, Z.J. Liu, B.C.K. Tee, Augmented reality interfaces using virtual customization of microstructured electronic skin sensor sensitivity performances, Adv. Funct. Mater., 31 (39), 2008650, https://doi.org/10.1002/adfm.202008650.
Y.H. Jung, J.H. Kim, J.A. Rogers, Skin-integrated vibrohaptic interfaces for virtual and augmented reality, Adv. Funct. Mater., 31 (39), 2008805, https://doi.org/10.1002/adfm.202008805.
K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence, Adv. Mater., 32 (5), 1902549, https://doi.org/10.1002/adma.201902549.
Shih, 2020, Electronic skins and machine learning for intelligent soft robots, Sci. Robot., 5, eaaz9239, 10.1126/scirobotics.aaz9239
Z. Zheng, D. Yu, Y. Guo, Dielectric modulated glass fiber fabric‐based single electrode triboelectric nanogenerator for efficient biomechanical energy harvesting, Adv. Funct. Mater., 31 (32), 2102431, https://doi.org/10.1002/adfm.202102431.
Yang, 2013, A single-electrode based triboelectric nanogenerator as self-powered tracking system, Adv. Mater., 25, 6594, 10.1002/adma.201302453
D. Yang, H. Guo, X. Chen, L. Wang, P. Jiang, W. Zhang, L. Zhang, Z.L. Wang, A flexible and wide pressure range triboelectric sensor array for real-time pressure detection and distribution mapping, J. Mater. Chem. A, 8 (45), 23827–23833, https://doi.org/10.1039/D0TA08223F.
X. Peng, K. Dong, C.Y. Ye, Y. Jiang, S.Y. Zhai, R.W. Cheng, D. Liu, X.P. Gao, J. Wang, Z.L. Wang, A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators, Sci. Adv., 6 (26), aba9624, https://doi.org/10.1126/sciadv.aba9624.
X. Luo, L. Zhu, Y.C. Wang, J. Li, J. Nie, Z.L. Wang, A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel, Adv. Funct. Mater., 31 (38), 2104928, https://doi.org/10.1002/adfm.202104928.
J. Han, C. Xu, J. Zhang, N. Xu, Y. Xiong, X. Cao, Y. Liang, L. Zheng, J. Sun, J. Zhai, Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization, ACS Nano, 15 (1), 1597-1607, https://doi.org/10.1021/acsnano.0c09146.
Lin, 2017, Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring, ACS Nano, 11, 8830, 10.1021/acsnano.7b02975
J. He, R.H. Zhou, Y.F. Zhang, W.C. Gao, T. Chen, W.J. Mai, C.F. Pan, Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite, Adv. Funct. Mater., 32 (10), 2107281, https://doi.org/10.1002/adfm.202107281.
S.Y. Chao, H. Ouyang, D.J. Jiang, Y.B. Fan, Z. Li, Triboelectric nanogenerator based on degradable materials, Ecomat, 3 (1), e12072, https://doi.org/10.1002/eom2.12072.
S. Joo, J.H. Kim, C.E. Lee, J.M. Kang, S. Seo, J.H. Kim, Y.K. Song, Eco-friendly keratin-based additives in the polymer matrix to enhance the output of triboelectric nanogenerators, ACS Appl. Bio Mater., e12072, https://doi.org/10.1002/eom2.12072.
D.Z. Zhang, Y. Yang, Z.Y. Xu, D.Y. Wang, C. Du, An eco-friendly gelatin based triboelectric nanogenerator for a self-powered PANI nanorod/NiCo2O4 nanosphere ammonia gas sensor, J. Mater. Chem. A, 10 (20), 10935–10949, https://doi.org/10.1039/d2ta01788a.
Q.Q. Niu, H.F. Wei, B.S. Hsiao, Y.P. Zhang, Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices, Nano Energy, 96, 107101, https://doi.org/10.1016/j.nanoen.2022.107101.
N.R. Kheirabadi, F. Karimzadeh, M.H. Enayati, E.N. Kalali, Green flexible triboelectric nanogenerators based on edible proteins for electrophoretic deposition, Adv. Electron. Mater., 2200839, https://doi.org/10.1002/aelm.202200839.
Feroz, 2020, Keratin - based materials for biomedical applications, Bioact. Mater., 5, 496, 10.1016/j.bioactmat.2020.04.007
M. Lebedyte, D. Sun, A review: can waste wool keratin be regenerated as a novel textile fibre via the reduction method?, J. Text. Inst., 113 (8), 1750–1766, https://doi.org/10.1080/00405000.2021.1940018.
Tinoco, 2022, Biotechnology of functional proteins and peptides for hair cosmetic formulations, Trends Biotechnol., 40, 591, 10.1016/j.tibtech.2021.09.010
Jayaweera, 2018, Triboelectric nanogenerator based on human hair, ACS Sustain. Chem. Eng., 6, 6321, 10.1021/acssuschemeng.8b00136
Fu, 2020, A triboelectric nanogenerator based on human fingernail to harvest and sense body energy, Microelectron. Eng., 232, 10.1016/j.mee.2020.111408
K. G, Electric polarisation in keratin-water and keratin-methyl alcohol systems, Trans. Faraday Soc., 43, 601–611, https://doi.org/10.1039/TF9474300601.
Gao, 2020, "All-in-one" hydrolyzed keratin protein-modified polyacrylamide composite hydrogel transducer, Chem. Eng. J., 398, 10.1016/j.cej.2020.125555
Gao, 2020, A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel, J. Mater. Chem. A, 8, 24175, 10.1039/D0TA07883B
Guan, 2022, Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy, Adv. Funct. Mater., 32, 2112281, 10.1002/adfm.202112281
Natali, 2019, Engineering of keratin functionality for the realization of bendable all-biopolymeric micro-electrode array as humidity sensor, Biosens. Bioelectron., 141, 10.1016/j.bios.2019.111480
Zhang, 2022, Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor, Chin. Phys. B, 31, 10.1088/1674-1056/ac3ca9
Rouse, 2010, A review of keratin-based biomaterials for biomedical applications, Materials, 3, 999, 10.3390/ma3020999
Wang, 2016, Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration, Prog. Mater. Sci., 76, 229, 10.1016/j.pmatsci.2015.06.001
Zhao, 2022, Separator with high ionic conductivity and good stability prepared from keratin fibers for supercapacitor applications, Chem. Eng. J., 444, 10.1016/j.cej.2022.136537
Wu, 2019, Triboelectric nanogenerator: a foundation of the energy for the new era, Adv. Energy Mater., 9, 1802906, 10.1002/aenm.201802906
Zade, 2011, From short conjugated oligomers to conjugated polymers. Lessons from studies on long conjugated oligomers, Acc. Chem. Res., 44, 14, 10.1021/ar1000555
Feng, 2015, A role for disulfide bonding in keratin intermediate filament organization and dynamics in skin keratinocytes, J. Cell Biol., 209, 59, 10.1083/jcb.201408079
Nakata, 2017, PubChemQC project: a large-scale first-principles electronic structure database for data-driven chemistry, J. Chem. Inf. Model., 57, 1300, 10.1021/acs.jcim.7b00083
Ryu, 2017, High-performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions, Adv. Energy Mater., 7, 1700289, 10.1002/aenm.201700289
Fan, 2012, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films, Nano Lett., 12, 3109, 10.1021/nl300988z
Mule, 2019, Humidity sustained wearable pouch‐type triboelectric nanogenerator for harvesting mechanical energy from human activities, Adv. Funct. Mater., 29, 1807779, 10.1002/adfm.201807779
Mannsfeld, 2010, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater., 9, 859, 10.1038/nmat2834
Wang, 2021, Multidimensional force sensors based on triboelectric nanogenerators for electronic skin, ACS Appl. Mater. Interfaces, 13, 56320, 10.1021/acsami.1c17506
Ma, 2019, Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism, Nano Energy, 66, 10.1016/j.nanoen.2019.104105
Jiang, 2016, Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel, ACS Nano, 10, 7696, 10.1021/acsnano.6b03042
Zhu, 2020, Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications, Sci. Adv., 6, aaz8693, 10.1126/sciadv.aaz8693
C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial intelligence, 2017, p. 31. https://doi.org/10.1609/aaai.v31i1.11231.