Breathable Electronic Skins for Daily Physiological Signal Monitoring

Nano-Micro Letters - Tập 14 - Trang 1-28 - 2022
Yi Yang1, Tianrui Cui1, Ding Li1, Shourui Ji1, Zhikang Chen1, Wancheng Shao1, Houfang Liu1, Tian-Ling Ren1,2
1School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, People’s Republic of China
2Center for Flexible Electronics Technology, Tsinghua University, Beijing, People’s Republic of China

Tóm tắt

With the aging of society and the increase in people’s concern for personal health, long-term physiological signal monitoring in daily life is in demand. In recent years, electronic skin (e-skin) for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations. Among them, the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life. In this review, the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed. By dividing them into breathable e-skin electrodes, breathable e-skin sensors, and breathable e-skin systems, we sort out their design ideas, manufacturing processes, performances, and applications and show their advantages in long-term physiological signal monitoring in daily life. In addition, the development directions and challenges of the breathable e-skin are discussed and prospected.

Tài liệu tham khảo

S. Zhang, S. Li, Z. Xia, K. Cai, A review of electronic skin: soft electronics and sensors for human health. J. Mater. Chem. B 8(5), 852–862 (2020). https://doi.org/10.1039/c9tb02531f J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765 W. Navaraj, C. Smith, R. Dahiya, Chapter 5—E-skin and wearable systems for health care. Wearable Bioelectronics, pp. 133-178 (2020). https://doi.org/10.1016/B978-0-08-102407-2.00006-0 T.P.D. Shareena, D. Mcshan, A.K. Dasmahapatra, P.B. Tchounwou, A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018). https://doi.org/10.1007/s40820-018-0206-4 Y. Qiao, X. Li, J. Wang, S. Ji, T. Hirtz et al., Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small 18(7), 2104810 (2022). https://doi.org/10.1002/smll.202104810 Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30(20), 1904523 (2020). https://doi.org/10.1002/adfm.201904523 C.G. Núñez, L. Manjakkal, R. Dahiya, Energy autonomous electronic skin. Npj Flex. Electron. (2019). https://doi.org/10.1038/s41528-018-0045-x B. Shih, D. Shah, J. Li, T.G. Thuruthel, Y.L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5(41), eaaz9239 (2020). https://doi.org/10.1126/scirobotics.aaz9239 J. Wei, J. Xie, P. Zhang, Z. Zou, H. Ping et al., Bioinspired 3D printable, self-healable, and stretchable hydrogels with multiple conductivities for skin-like wearable strain sensors. ACS. Appl. Mater. Interfaces 13(2), 2952–2960 (2021). https://doi.org/10.1021/acsami.0c19512 Y.W. Cai, X.N. Zhang, G.G. Wang, G.Z. Li, D.Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663 Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720 X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624 S.K. Ameri, R. Ho, H. Jang, L. Tao, Y. Wang et al., Graphene electronic tattoo sensors. ACS Nano 11(8), 7634–7641 (2017). https://doi.org/10.1021/acsnano.7b02182 Z. Pei, Q. Zhang, Q. Li, C. Ji, Y. Liu et al., A fully 3D printed electronic skin with bionic high resolution and air permeable porous structure. J. Colloid Interf. Sci. 602, 452–458 (2021). https://doi.org/10.1016/j.jcis.2021.06.041 W. Yang, R. Cao, X. Zhang, H. Li, C. Li, Air-permeable and washable paper-based triboelectric nanogenerator based on highly flexible and robust paper electrodes. Adv. Mater. Technol. 3(11), 1800178 (2018). https://doi.org/10.1002/admt.201800178 C. Hou, Z. Xu, W. Qiu, R. Wu, Y. Wang et al., A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15(11), 1805084 (2019). https://doi.org/10.1002/smll.201805084 J. Oh, S.G. Jang, S. Moon, J. Kim, H.K. Park et al., Air-permeable waterproofing electrocardiogram patch to monitor full-day activities for multiple days. Adv. Healthc. Mater. 11(12), 2102703 (2022). https://doi.org/10.1002/adhm.202102703 L. Guo, L. Sandsjö, M. Ortiz-Catalan, M. Skrifvars, Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording. Text. Res. J. 90(2), 227–244 (2020). https://doi.org/10.1177/0040517519858768 A.J. Golparvar, M.K. Yapici, Graphene smart textile-basedwearable eye movement sensor for electro-ocular control and interaction with objects. J. Electrochem. Soc. 166(9), B3184–B3193 (2019). https://doi.org/10.1149/2.0241907jes G. Acar, O. Ozturk, A.J. Golparvar, T.A. Elboshra, K. Böhringer et al., Wearable and flexible textile electrodes for biopotential signal monitoring: a review. Electronics 8(5), 479 (2019). https://doi.org/10.3390/electronics8050479 O. Yue, X. Wang, X. Liu, M. Hou, M. Zheng et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8(15), 2004377 (2021). https://doi.org/10.1002/advs.202004377 Y. Shi, X. Wei, K. Wang, D. He, Z. Yuan et al., Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS. Appl. Mater. Interfaces 13(42), 50329–50337 (2021). https://doi.org/10.1021/acsami.1c13420 M. Li, K. Chang, W. Zhong, C. Xiang, W. Wang et al., A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Appl. Surf. Sci. 486, 249–256 (2019). https://doi.org/10.1016/j.apsusc.2019.04.271 Y. Zhao, Y. Huang, W. Hu, X. Guo, Y. Wang et al., Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin. Smart Mater. Struct. 28(3), 035004 (2019). https://doi.org/10.1088/1361-665X/aaf3ce X. Peng, K. Dong, C. Ning, R. Cheng, J. Yi et al., All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 31(34), 2103559 (2021). https://doi.org/10.1002/adfm.202103559 Y.J. Hong, H. Jeong, K.W. Cho, N. Lu, D.H. Kim, Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29(19), 1808247 (2019). https://doi.org/10.1002/adfm.201808247 T. Sanna, H.C. Diener, R.S. Passman, V.D. Lazzaro, R.A. Bernstein et al., Cryptogenic stroke and underlying atrial fibrillation. New Engl. J. Med. 370(26), 2478–2486 (2014). https://doi.org/10.1056/NEJMoa1313600 H.C. Jung, J.H. Moon, D.H. Baek, J.H. Lee, Y.Y. Choi et al., CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE. T. Bio-Med. Eng. 59(5), 1472–1479 (2012). https://doi.org/10.1109/TBME.2012.2190288 S. Zheng, W. Li, Y. Ren, Z. Liu, X. Zou et al., Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34(4), 2106570 (2021). https://doi.org/10.1002/adma.202106570 L. Eskandarian, A. Toossi, F. Nassif, S.G. Rostami, S. Ni et al., 3D-knit dry electrodes using conductive elastomeric fibers for long-term continuous electrophysiological monitoring. Adv. Mater. Technol. (2022). https://doi.org/10.1002/admt.202101572 Y. Qiao, X. Li, J. Jian, Q. Wu, Y. Wei et al., Substrate-free multilayer graphene electronic skin for intelligent diagnosis. ACS Appl. Mater. Interfaces 12(44), 49945–49956 (2020). https://doi.org/10.1021/acsami.0c12440 A.M. Boukadoum, P.Y. Ktonas, EOG-based recording and automated detection of sleep rapid eye movements: a critical review, and some recommendations. Psychophysiology 23(5), 598–611 (1986). https://doi.org/10.1111/j.1469-8986.1986.tb00678.x Y. Nam, B. Koo, A. Cichocki, S. Choi, GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Trans. Biomed. Eng. 61(2), 453–462 (2014). https://doi.org/10.1109/TBME.2013.2280900 R. Rac-Lubashevsky, H.A. Slagter, Y. Kessler, Tracking real-time changes in working memory updating and gating with the event-based eye-blink rate. Sci. Rep. 7, 2547 (2017). https://doi.org/10.1038/s41598-017-02942-3 R. Barea, L. Boquete, J.M. Rodriguez-Ascariz, S. Ortega, E. Lopez, Sensory system for implementing a human-computer interface based on electrooculography. Sensors 11(1), 310–328 (2011). https://doi.org/10.3390/s110100310 S.K. Ameri, M. Kim, I.A. Kuang, W.K. Perera, M. Alshiekh et al., Imperceptible electrooculography graphene sensor system for human-robot interface. Npj 2D Mater. Appl. 2, 19 (2018). https://doi.org/10.1038/s41699-018-0064-4 A.J. Golparvar, M.K. Yapici, Toward graphene textiles in wearable eye tracking systems for human-machine interaction. Beilstein J. Nanotechnol. 12, 180–189 (2021). https://doi.org/10.3762/bjnano.12.14 T.H. Hsieh, M.H. Liu, C.E. Kuo, Y.H. Wang, S.F. Liang, Home-use and real-time sleep-staging system based on eye masks and mobile devices with a deep learning model. J. Med. Biol. Eng. 41(5), 659–668 (2021). https://doi.org/10.1007/s40846-021-00649-5 M. Isik, T. Lonjaret, H. Sardon, R. Marcila, T. Herve et al., Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology. J. Mater. Chem. C 3(34), 8942–8948 (2015). https://doi.org/10.1039/C5TC01888A Y. Liu, J.J.S. Norton, R. Qazi, Z. Zou, K.R. Ammann et al., Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2(11), e1601185 (2015). https://doi.org/10.1126/sciadv.1601185 L. Tian, B. Zimmerman, A. Akhtar, K.J. Yu, M. Moore et al., Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3(3), 194–205 (2019). https://doi.org/10.1038/s41551-019-0347-x S.H. Byun, J.Y. Sim, Z. Zhou, J. Lee, R. Qazi et al., Mechanically transformative electronics, sensors, and implantable devices. Sci. Adv. 5(11), eaay0418 (2019). https://doi.org/10.1126/sciadv.aay0418 X. Yang, S. Wang, M. Liu, L. Li, Y. Zhao et al., All-nanofiber-based janus epidermal electrode with directional sweat permeability for artifact-free biopotential monitoring. Small 18(12), 2106477 (2022). https://doi.org/10.1002/smll.202106477 Y.T. Kwon, J.J.S. Norton, A. Cutrone, H.R. Lim, S. Kwon et al., Breathable, large-area epidermal electronic systems for recording electromyographic activity during operant conditioning of H-reflex. Biosens. Bioelectron. 165(1), 112404 (2020). https://doi.org/10.1016/j.bios.2020.112404 A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotech. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125 G. Deng, Y.C. Qiao, N.Q. Deng, X.S. Li, Q. Wu et al., A flexible electroencephalography electronic skin based on graphene. 5th IEEE Electron Devices Technology & Manufacturing Conference, 1–3 (2021). https://doi.org/10.1109/EDTM50988.2021.9420850 J.H. Mckay, A.M. Feyissa, U. Sener, C. D’Souza, C. Smelick et al., Time is brain: the use of EEG electrode caps to rapidly diagnose nonconvulsive status epilepticus. J. Clin. Neurophysiol. 36(6), 460–466 (2019). https://doi.org/10.1097/WNP.0000000000000603 G.B. Tseghai, B. Malengier, K.A. Fante, L.V. Langenhove, The status of textile-based dry EEG eelectrodes. Autex. Res. J. 21(1), 63–70 (2021). https://doi.org/10.2478/aut-2019-0071 D.H. Ho, P. Hong, J.T. Han, S.Y. Kim, S.J. Kwon et al., 3D-printed sugar scaffold for high-precision and highly sensitive active and passive wearable sensors. Adv. Sci. 7(1), 1902521 (2020). https://doi.org/10.1002/advs.201902521 J.J. Kim, L.K. Allison, T.L. Andrew, Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci. Adv. 5(3), eaaw0463 (2019). https://doi.org/10.1126/sciadv.aaw0463 S. Lee, D. Sasaki, D. Kim, M. Mori, T. Yokota et al., Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotech. 14(2), 156–160 (2019). https://doi.org/10.1038/s41565-018-0331-8 S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 7(1), 1700889 (2018). https://doi.org/10.1002/adhm.201700889 W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing. Small 18(7), 2103734 (2022). https://doi.org/10.1002/smll.202103734 Y. Guo, X. Wei, S. Gao, W. Yue, Y. Li et al., Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv. Funct. Mater. 31(40), 2104288 (2021). https://doi.org/10.1002/adfm.202104288 K. Kireev, K. Sel, B. Ibrahim, N. Kumar, A. Akbari et al., Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. (2022). https://doi.org/10.1038/s41565-022-01145-w X. Lin, Y. Bing, F. Li, H. Mei, S. Liu et al., An all-nanofiber-based, breathable, ultralight electronic skin for monitoring physiological signals. Adv. Mater. Technol. (2022). https://doi.org/10.1002/admt.202101312 Y. Liu, J. Tao, W. Yang, Y. Zhang, J. Li et al., Biodegradable, breathable leaf vein-based tactile sensors with tunable sensitivity and sensing range. Small 18(8), 2106906 (2022). https://doi.org/10.1002/smll.202106906 S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., An all-nanofiber-based, breathable, Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735 W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma et al., Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5), 5798–5805 (2020). https://doi.org/10.1021/acsnano.0c00906 W. Du, J. Nie, Z. Ren, T. Jiang, L. Xu et al., Inflammation-free and gas-permeable on-skin triboelectric nanogenerator using soluble nanofibers. Nano Energy 51, 260–269 (2018). https://doi.org/10.1016/j.nanoen.2018.06.026 Z. Jiang, M. Osman, G. Nayeem, K. Fukuda, S. Ding et al., Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv. Mater. 31(37), 1903446 (2019). https://doi.org/10.1002/adma.201903446 Y. Li, J. Xiong, J. Lv, J. Chen, D. Gao et al., Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator. Nano Energy 78, 105358 (2020). https://doi.org/10.1016/j.nanoen.2020.105358 A. Elsayes, V. Sharma, K. Yiannacou, A. Koivikko, A. Rasheed et al., Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer. Adv. Sustain. Syst. 4(9), 2000056 (2020). https://doi.org/10.1002/adsu.202000056 R. Wu, L. Ma, A. Patil, C. Hou, S. Zhu et al., All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl. Mater. Interfaces 11(36), 33336–33346 (2019). https://doi.org/10.1021/acsami.9b10928 K. Zhou, W. Xu, Y. Yu, W. Zhai, Z. Yuan et al., Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Small 17(31), 2100542 (2021). https://doi.org/10.1002/smll.202100542 O. Yue, X. Wang, M. Hou, M. Zheng, Z. Bai et al., Skin-inspired wearable self-powered electronic skin with tunable sensitivity for real-time monitoring of sleep quality. Nano Energy 91, 106682 (2022). https://doi.org/10.1016/j.nanoen.2021.106682 Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514 S. Sharma, A. Chhetry, S. Zhang, H. Yoon, C. Park et al., Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 15(3), 4380–4393 (2021). https://doi.org/10.1021/acsnano.0c07847 R. Matsukawa, A. Miyamoto, T. Yokota, T. Someya, Skin impedance measurements with nanomesh electrodes for monitoring skin hydration. Adv. Healthc. Mater. 9(22), 2001322 (2020). https://doi.org/10.1002/adhm.202001322 H. Yeon, H. Lee, Y. Kim, D. Lee, Y. Lee et al., Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7(27), eabg8459 (2021). https://doi.org/10.1126/sciadv.abg8459 Z. Cui, F.R. Poblete, Y. Zhu, Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors. ACS Appl. Mater. Interfaces 11(19), 17836–17842 (2019). https://doi.org/10.1021/acsami.9b04045 M. Gong, P. Wan, D. Ma, M. Zhong, M. Liao et al., Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 29(26), 1902127 (2019). https://doi.org/10.1002/adfm.201902127 W. Jeong, S. Lee, S. Yoo, S. Park, H. Choi et al., A hierarchical metal nanowire network structure for durable, cost-effective, stretchable, and breathable electronics. ACS Appl. Mater. Interfaces 13(50), 60425–60432 (2021). https://doi.org/10.1021/acsami.1c18538 Q. Wang, S. Ling, X. Liang, H. Wang, H. Lu et al., Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 29(16), 1808695 (2019). https://doi.org/10.1002/adfm.201808695 J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021). https://doi.org/10.1016/j.cej.2020.126898 Y.L. Li, Y.H. Liu, L.S. Chen, J.L. Xu, A conformable, gas-permeable, and transparent skin-like micromesh architecture for glucose monitoring. Adv. Healthc. Mater. 10(18), 2100046 (2021). https://doi.org/10.1002/adhm.202100046 M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. PANS 117(13), 7063–7070 (2020). https://doi.org/10.1073/pnas.1920911117 M. Chao, L. He, M. Gong, N. Li, X. Li et al., Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15(6), 9746–9758 (2021). https://doi.org/10.1021/acsnano.1c00472 S. Wei, R. Yin, T. Tang, Y. Wu, Y. Liu et al., Gas-permeable, irritation-free, transparent hydrogel contact lens devices with metal-coated nanofiber mesh for eye interfacing. ACS Nano 13(7), 7920–7929 (2019). https://doi.org/10.1021/acsnano.9b02305 X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8 H. Chae, H.J. Kwon, Y.K. Kim, Y. Won, D. Kim et al., Laser-processed nature-inspired deformable structures for breathable and reusable electrophysiological sensors toward controllable home electronic appliances and psychophysiological stress monitoring. ACS Appl. Mater. Interfaces 11(31), 28387–28396 (2019). https://doi.org/10.1021/acsami.9b06363 Z. Hui, R. Chen, J. Chang, Y. Gong, X. Zhang et al., Solution-processed sensing textiles with adjustable sensitivity and linear detection range enabled by twisting structure. ACS Appl. Mater. Interfaces 12(10), 12155–12164 (2020). https://doi.org/10.1021/acsami.0c00564 Z. Liu, Y. Zheng, L. Jin, K. Chen, H. Zhai et al., Highly breathable and stretchable strain sensors with insensitive response to pressure and bending. Adv. Funct. Mater. 31(14), 2007622 (2021). https://doi.org/10.1002/adfm.202007622 J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0 Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3 L. Zhang, J. He, Y. Liao, X. Zeng, N. Qiu et al., A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J. Mater. Chem. A 7(46), 26631–26640 (2019). https://doi.org/10.1039/C9TA10744D N. Rodeheaver, H. Kim, R. Herbert, H. Seo, W.H. Yeo, Breathable, wireless, thin-film wearable biopatch using noise-reduction mechanisms. ACS Appl. Electron. Mater. 4(1), 503–512 (2022). https://doi.org/10.1021/acsaelm.1c01107 D. Shin, C. Shen, M. Sanghadasa, L. Lin, Breathable 3D supercapacitors based on activated carbon fiber veil. Adv. Mater. Technol. 3(11), 1800209 (2018). https://doi.org/10.1002/admt.201800209 H. Zhang, R. He, H. Liu, Y. Niu, Z. Li et al., A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sens. Actuat. A Phys. 322, 112611 (2021). https://doi.org/10.1016/j.sna.2021.112611 K.I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y. Zhang et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014). https://doi.org/10.1038/ncomms5779 Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 224 (2018). https://doi.org/10.1038/s41467-017-02685-9 X. Zhao, L.Y. Wang, C.Y. Tang, X.J. Zha, Y. Liu et al., Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7), 8793–8805 (2020). https://doi.org/10.1021/acsnano.0c03391 K. Sim, Z. Rao, Z. Zou, F. Ershad, J. Lei et al., Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 5(8), eaav9653 (2019). https://doi.org/10.1126/sciadv.aav9653 X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional E-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8 X. Li, P. Zhu, S. Zhang, X. Wang, X. Luo et al., A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin. ACS Nano 16(4), 5909–5019 (2022). https://doi.org/10.1021/acsnano.1c11096 C. Wang, C. Pan, Z. Wang, Electronic skin for closed-loop systems. ACS Nano 13(11), 12287–12293 (2019). https://doi.org/10.1021/acsnano.9b06576 Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5(41), eaaz7946 (2019). https://doi.org/10.1126/scirobotics.aaz7946