A data assimilation framework for data-driven flow models enabled by motion tomography
Tóm tắt
Tài liệu tham khảo
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Chang, D., Zhang, F.: Resolving temporal variations in data-driven flow models constructed by motion tomography. In: IFAC-Papers OnLine, vol. 49, pp. 182–187. Elsevier, Amsterdam (2016)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Dover Publications, New York (1970)
Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bulletin International de l’Academie Polonaise des Sciences et des Lettres 35, 355–357 (1937)
Kak, A.C., Malcom, S.: Principles of Tombgraphic Imaging. Society for Industrial and Applied Mathematics, Philadelphia (2001)
Luettich, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Tech. rep., Coastal Engineering Research Center, Vicksburg, Mississippi (1992)
Robinson, A.R., Lermusiaux, P.F.: Data Assimilation in Models. Encyclopedia of Ocean Sciences, 2nd Edn., pp. 1–12 (2008)
Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell. 9(4), 347–404 (2005)
Wu, W., Chang, D., Zhang, F.: Glider CT: reconstructing flow fields from predicted motion of underwater gliders. In: Proceedings of the Eighth ACM International Conference on Underwater Networks and Systems-WUWNet ’13, p. 47 (2013)