Predictive flow-field estimation

Physica D: Nonlinear Phenomena - Tập 238 - Trang 290-308 - 2009
Paritosh Mokhasi1, Dietmar Rempfer1, Sriharsha Kandala1
1Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, United States

Tài liệu tham khảo

Britter, 2003, Flow and dispersion in urban areas, Annu. Rev. Fluid Mech., 35, 469, 10.1146/annurev.fluid.35.101101.161147 Courtier, 1994, A strategy for operational implementation of 4D-VAR, using an incremental approach, Quart. J. Roy. Meteor. Soc., 120, 1367, 10.1002/qj.49712051912 Courtier, 1998, The ECMWF implementation of three-dimensional variational assimilation (3D-Var). Part 1: Formulation, Quart. J. Roy. Meteor. Soc., 124, 1783 Berkooz, 1993, The proper orthogonal decomposition in the analysis of turbulent flow, Annu. Rev. Fluid Mech., 25, 539, 10.1146/annurev.fl.25.010193.002543 Holmes, 1996 Lumley, 1970 Aubry, 1988, The dynamics of coherent structures in wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115, 10.1017/S0022112088001818 Kirby, 1990, Application of the Karhunen Loeve procedure for the characterization of human faces, IEEE Trans. Pattern Anal. Mach. Intell., 12, 103, 10.1109/34.41390 Sirovich, 1987, Turbulence and the dynamics of coherent structures, Part I: Coherent structures, Quart. Appl. Math., 45, 561, 10.1090/qam/910462 Aubry, 1991, Spatio-temporal analysis of complex signals: Theory and applications, J. Stat. Phys., 64, 683, 10.1007/BF01048312 Aubry, 1991, On the beauty of proper orthogonal decomposition, Theor. Comput. Fluid Dyn., 2, 339, 10.1007/BF00271473 A.J. Newman, Model reduction via the Karhunen–Loève expansion part I: An exposition, Technical Report T.R.96-32, Institute for Systems Research, 1996 Aubry, 1992, Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions, J. Non-linear Sci., 2, 183, 10.1007/BF02429855 Aubry, 1992, Turbulence spectra, J. Stat. Phys., 67, 203, 10.1007/BF01049031 Fernando, 2001, Urban fluid mechanics: Air circulation and contaminant dispersion in cities, Environ. Fluid Mech., 1, 107, 10.1023/A:1011504001479 Sirovich, 1992, Management and analysis of large scientific dataset, Int. J. Supercomput. Appl., 6, 50, 10.1177/109434209200600104 Everson, 1995, The Karhunen–Loeve procedure for gappy data, J. Opt. Soc. Am., 12, 1657, 10.1364/JOSAA.12.001657 Mokhasi, 2004, Optimized sensor placement for urban flow measurement, Phys. Fluids, 16, 1758, 10.1063/1.1689351 Rempfer, 2000, On low-dimensional Galerkin models for fluid flow, Theor. Comput. Fluid Dyn., 14, 75, 10.1007/s001620050131 K.B. Shah, Large Eddy simulation of flow past a cubic obstacle, Ph.D Thesis, Stanford University Shah, 1997, A fluid mechanical view of wind engineering: Large eddy simulation of flow past a cubic obstacle, J. Wind Eng. Ind. Aerodyn., 67, 211, 10.1016/S0167-6105(97)00074-3 Martinuzzi, 1993, The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow, J. Fluid Eng., 115, 85, 10.1115/1.2910118 K. Iwamoto, Database of fully developed channel flow, THTLAB internal report, THTLAB, Dept. of Mech. Engg., University of Tokyo., No. ILR-0201, 2002 Ogawa, 1982, A field investigation of the flow and diffusion around a model cube, Atmos. Environ., 16, 207, 10.1016/0004-6981(82)90435-8 Huber, 1989, The influence of building width and orientation on plume dispersion in the wake of a building, Atmos. Environ., 23, 2109, 10.1016/0004-6981(89)90172-8 B.T. Tan, M. Damodaran, K. Willcox, Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics, AIAA Paper, 2003, pp. 2003–4213 Rempfer, 1994, Evolution of three-dimensional coherent structures in a flat- plate boundary layer, J. Fluid Mech., 260, 351, 10.1017/S0022112094003551 Rempfer, 1994, Dynamics of three-dimensional coherent structures in a flat-plate boundary layer, J. Fluid Mech., 275, 257, 10.1017/S0022112094002351 Lorenc, 1986, Analysis methods for numerical weather prediction, QJR Meteorol. Soc., 112, 1177, 10.1002/qj.49711247414 Daley, 1991 Glauser, 1992, Application of multipoint measurements for flow characterization, Exp. Therm. Fluid Sci., 5, 617, 10.1016/0894-1777(92)90018-Z Hudy, 2007, Stochastic estimation of separated flow field using wall pressure array measurement, Phys. Fluids, 19, 10.1063/1.2472507 Bonnet, 1994, Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structure, Exp. Fluids, 17, 307, 10.1007/BF01874409 R.J. Adrian, On the role of conditional averages in turbulence theory, in: Proceedings of the 4th Biennal Symposium on Turbulence in Liquids, 1977 Adrian, 1979, Conditional eddies in isotropic turbulence, Phys. Fluids, 22, 2065, 10.1063/1.862515 Cole, 1998, Applications of stochastic estimation in axisymmetric sudden expansion, Phys. Fluids, 10, 2941, 10.1063/1.869814 Tinney, 2006, On spectral linear stochastic estimation, Exp. Fluids, 41, 763, 10.1007/s00348-006-0199-5 Murray, 2003, Estimation of flow field from surface pressure measurements in open cavity, AIAA J., 415, 969, 10.2514/2.2035 Guezennec, 1989, Stochastic estimation of coherent structures in turbulent boundary layers, Phys. Fluids A, 1, 1054, 10.1063/1.857396 Taylor, 2004, Towards practical flow sensing and control via POD and LSE based low-dimensional tools, J. Fluid Eng., 126, 337, 10.1115/1.1760540 Gunes, 2006, Gappy data: To Krig or not to Krig ?, J. Comput. Phys., 212, 358, 10.1016/j.jcp.2005.06.023 Sirisup, 2004, A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys., 194, 92, 10.1016/j.jcp.2003.08.021 Gapentine, 1997, Managing multicollinearity, J. Mark. Res., 9, 11 Perret, 2006, Polynomial identification of POd based low-order dynamical system, J. Turbul., 7, 1 Galletti, 2007, Accurate model reduction of transient and forced wakes, Eur. J. Mech. B. Fluids, 26, 354, 10.1016/j.euromechflu.2006.09.004 Couplet, 2005, Calibrated reduced order POD Galerkin system for fluid flow modeling, J. Comput. Phys., 207, 192, 10.1016/j.jcp.2005.01.008 Fletcher, 1984 Noack, 2005, The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech., 523, 339, 10.1017/S0022112004002149 Noack, 2003, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335, 10.1017/S0022112003006694 Noack, 1994, A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder, Phys. Fluids, 6, 124, 10.1063/1.868433 Mason, 1991, Collinearity, power, and interpretation of multiple regression analysis, J. Mark. Res., 28, 268, 10.2307/3172863 Lipovetsky, 2001, Multiobjective regression modifications for collinearity, Comput. Oper. Res., 28, 1333, 10.1016/S0305-0548(00)00043-5 Lipovetsky, 2006, Two-parameter ridge regression and its convergence to the eventual pairwise model, Math. Comput. Modeling, 44, 304, 10.1016/j.mcm.2006.01.017 Hoskuldsson, 1998, PLS regression methods, J. Chemom., 2, 211, 10.1002/cem.1180020306 Wold, 2001, PLS regression: A basic tool of chemometrics, Chemometr. Intell. Lab. Syst., 58, 109, 10.1016/S0169-7439(01)00155-1 Hoerl, 1970, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.2307/1267351 Cristianini, 2000 Jolliffe, 1982, A note on the use of principal components in regression, Appl. Stat., 31, 300, 10.2307/2348005 Jolliffe, 1986 Rosipal, 2001, Kernel partial least squares regression in reproducing Kernel Hilbert space, J. Mach. Learn. Res., 2, 97 Bontempi, 1999, Lazy learning for local modeling and control design, Internat. J. Control, 72, 643, 10.1080/002071799220830 Takens, 1980, Detecting strange attractors in turbulence, vol. 898 Birattari, 1999, Lazy learning meets the recursive least squares algorithm, vol. 11, 375 Cleveland, 1988, Regression by local fitting: Methods, prospectives and computational algorithms, J. Econom., 37, 87, 10.1016/0304-4076(88)90077-2 Broomhead, 1988, Multivariable functional interpolation and adaptive networks, Complex Syst., 2, 321 Potts, 1991, Time series prediction with a radial basis function network, SPIE Adapt. Signal Process., 1565, 225 Casdagli, 1989, Nonlinear prediction of chaotic time series, Physica D, 35, 335, 10.1016/0167-2789(89)90074-2 Casdagli, 1992, Chaos and deterministic versus stochastic non-linear modeling, J. Roy. Stat. Soc. B, 54, 303 Sauer, 1991, Embedology, J. Stat. Phys., 65, 579, 10.1007/BF01053745 Chng, 1996, Gradient radial basis function networks for nonlinear and nonstationary time series prediction, IEEE Trans. Neural Netw., 7, 10.1109/72.478403 Fasshauer, 2007, vol. 6 Kalman, 1960, A new approach to linear filtering and prediction problems, ASME J. Basic Eng., 35, 10.1115/1.3662552 Jazwinsky, 1970 Julier, 2002, The scaled unscented transformation, Proc. Amer. Control Conf., 6, 4555 Julier, 2004, Unscented filtering and nonlinear estimation, Proc. IEEE, 92, 401, 10.1109/JPROC.2003.823141 Welch Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143, 10.1029/94JC00572 Evensen, 1994, Inverse Methods and data assimilation in nonlinear ocean models, Physica D, 77, 108, 10.1016/0167-2789(94)90130-9 Evensen, 2003, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 53, 343, 10.1007/s10236-003-0036-9 E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation, in: Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC, 2000, pp. 153–158 R. Van Der Merwe, Sigma-point Kalman filters for probabilistic inference in dynamic state–space models, Ph.D Thesis, Oregon Health & Science University, 2004 Kohonen, 1995