A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations
Tóm tắt
Tài liệu tham khảo
Antman, S.S.: The Theory of Rods. Handbuch der Physik, vol. VIa/2. Springer, Berlin (1972) (Flügge, S., Truesdell, C. (eds.))
Argyris, J.H.: An excursion into large rotations. Comput. Methods Appl. Mech. Eng. 32, 85–155 (1982)
Bathe, K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)
Betsch, P., Menzel, A., Stein, E.: On the parametrization of finite rotations in computational mechanics. A clarification of concepts with application to smooth shells. Comput. Methods Appl. Mech. Eng. 155, 273–305 (1998)
Crisfield, M.A., Jelenić, U.: Objectivity of strain measures in geometrically exact 3D beam theory and its finite element implementation. Proc. R. Soc. Lond. Ser. A 455, 1125–1147 (1999)
Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: García Orden, J.C., Goicolea, J.M., Cuadrado, J. (eds.) Multibody Dynamics 2005. ECCOMAS Thematic Conference, Madrid, Spain, 21–24 June 2005
Hughes, T.J.R.: The Finite Element Method. Prentice-Hall, Englewood Cliffs (1987)
Simo, J.C.: A finite strain beam formulation. Part I. The three-dimensional dynamic problem. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)
Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions-the plane case II. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 53(4), 855–63 (1986)
Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn. McGraw-Hill, New York (1991)