A Regularized LSTM Method for Predicting Remaining Useful Life of Rolling Bearings

Springer Science and Business Media LLC - Tập 18 - Trang 581-593 - 2021
Zhao-Hua Liu1, Xu-Dong Meng1, Hua-Liang Wei2, Liang Chen1, Bi-Liang Lu1, Zhen-Heng Wang1, Lei Chen1
1School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China
2Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK

Tóm tắt

Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting precision of the remaining useful life (RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory network (LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure. In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance.

Tài liệu tham khảo

B. D. Logan, J. Mathew. Using the correlation dimension for vibration fault diagnosis of rolling element bearings -II. Selection of experimental parameters. Mechanical Systems and Signal Processing, vol. 10, no. 3, pp. 251–264, 1996. DOI: https://doi.org/10.1006/mssp.1996.0019.

Y. Wang, Y. Z. Peng, Y. Y. Zi, X. H. Jin, K. L. Tsui. A two-stage data-driven-based prognostic approach for bearing degradation problem. IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 924–932, 2016. DOI: https://doi.org/10.1109/TII.2016.2535368.

H. Hanachi, J. Liu, A. Banerjee, Y. Chen, A. Koul. A physics-based modeling approach for performance monitoring in gas turbine engines. IEEE Transactions on Reliability, vol. 64, no. 1, pp. 197–205, 2015. DOI: https://doi.org/10.1109/TR.2014.2368872

H. Y. Dui, S. B. Si, M. J. Zuo, S. D. Sun. Semi-Markov process-based integrated importance measure for multistate systems. IEEE Transactions on Reliability, vol. 64, no. 2, pp. 754–765, 2015. DOI: https://doi.org/10.1109/TR.2015.2413031.

X. S. Si, W. B. Wang, C. H. Hu, D. H. Zhou, M. G. Pecht. Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Transactions on Reliability, vol. 61, no. 1, pp. 50–67, 2012. DOI: https://doi.org/10.1109/TR.2011.2182221.

Y. Q. Cui, J. Y. Shi, Z. L. Wang. Quantum assimilation-based state-of-health assessment and remaining useful life estimation for electronic systems. IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2379–2390, 2016. DOI: https://doi.org/10.1109/TIE.2015.2500199.

M. S. Li, D. Yu, Z. M. Chen, K. S. Xiahou, T. Y. Ji, Q. H. Wu. A data-driven residual-based method for fault diagnosis and isolation in wind turbines. IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 895–904, 2019. DOI: https://doi.org/10.1109/TSTE.2018.2853990.

F. Z. Cheng, L. Y. Qu, W. Qiao, L. W. Hao. Enhanced particle filtering for bearing remaining useful life prediction of wind turbine drivetrain gearboxes. IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4738–4748, 2019. DOI: https://doi.org/10.1109/TIE.2018.2866057.

F. Menacer, A. Kadr, Z. Dibi. Modeling of a smart Nano force sensor using finite elements and neural networks. International Journal of Automation and Computing, vol. 17, no. 2, pp. 279–291, 2020. DOI: https://doi.org/10.1007/s11633-018-1155-6.

L. Zhao, X. Wang. A deep feature optimization fusion method for extracting bearing degradation features. IEEE Access, vol. 6, pp. 19640–19653, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2824352.

K. Manohar, B. W. Brunton, J. N. Kutz, S. L. Brunton. Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns. IEEE Control Systems Magazine, vol. 38, no. 3, pp. 63–86, 2018. DOI: https://doi.org/10.1109/MCS.2018.2810460.

A. Soualhi, K. Medjaher, N. Zerhouni. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression. IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 1, pp. 52–62, 2016. DOI: https://doi.org/10.1109/TIM.2014.2330494.

D. A. Tobon-Mejia, K. Medjaher, N. Zerhouni, G. Tripot. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models. IEEE Transactions on Reliability, vol. 61, no. 2, pp. 491–503, 2012. DOI: https://doi.org/10.1109/TR.2012.2194177.

R. K. Singleton, E. G. Strangas, S. Aviyente. Extended Kalman filtering for remaining-useful-life estimation of bearings. IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1781–1790, 2015. DOI: https://doi.org/10.1109/TIE.2014.2336616.

J. Deutsch, D. He. Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 1, pp. 11–20, 2018. DOI: https://doi.org/10.1109/TSMC.2017.2697842.

W. Ahmad, S. A. Khan, J. M. Kim. A hybrid prognostics technique for rolling element bearings using adaptive predictive models. IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1577–1584, 2018. DOI: https://doi.org/10.1109/TIE.2017.2733487.

C. C. Chen, B. Zhang, G. Vachtsevanos, M. Orchard. Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering. IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4353–4364, 2011. DOI: https://doi.org/10.1109/TIE.2010.2098369.

A. Malhi, R. Q. Yan, R. X. Gao. Prognosis of defect propagation based on recurrent neural networks. IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 703–711, 2011. DOI: https://doi.org/10.1109/TIM.2010.2078296.

G. S. Pei, Y. B. Wang, Y. S. Cheng, L. L. Zhang. Joint label-density-margin space and extreme elastic net for label-specific features. IEEE Access, vol. 7, pp. 112304–112317, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2934742.

X. B. Pei, T. Dong, Y. Guan. Super-resolution of face images using weighted elastic net constrained sparse representation. IEEE Access, vol. 7, pp. 55180–55190, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2913008.

Y. T. Wu, M. Yuan, S. P. Dong, L. Lin, Y. Q. Liu. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, vol. 275, pp. 167–179, 2018. DOI: https://doi.org/10.1016/j.neucom.2017.05.063.

H. Zhang, Q. Zhang, S. Y. Shao, T. L. Niu, X. Y. Yang. Attention-based LSTM network for rotatory machine remaining useful life prediction. IEEE Access, vol. 8, pp. 132188–132199, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3010066.

Y. H. Chen, B. Han. Prediction of bearing degradation trend based on LSTM. In Proceedings of IEEE Symposium Series on Computational Intelligence, Xiamen, China, pp. 1035–1040, 2019. DOI: https://doi.org/10.1109/SSCI44817.2019.9002776.

Z. Zhao, W. H. Chen, X. M. Wu, P. C. Y. Chen, J. M. Liu. LSTM network: A deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, 2017. DOI: https://doi.org/10.1049/iet-its.2016.0208.

A. Mittal, P. Kumar, P. P. Roy, R. Balasubramanian, B. B. Chaudhuri. A modified LSTM model for continuous sign language recognition using leap motion. IEEE Sensors Journal, vol. 19, no. 16, pp. 7056–7063, 2019. DOI: https://doi.org/10.1109/JSEN.2019.2909837.

E. Chemali, P. J. Kollmeyer, M. Preindl, R. Ahmed, A. Emadi. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6730–6739, 2018. DOI: https://doi.org/10.1109/TIE.2017.2787586.

Y. T. Yang, J. Y. Dong, X. Sun, E. Lima, Q. Q. Mu, X. H. Wang. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 2, pp. 207–211, 2018. DOI: https://doi.org/10.1109/LGRS.2017.2780843.

P. J. Angeline, G. M. Saunders, J. B. Pollack. An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 54–65, 1994. DOI: https://doi.org/10.1109/72.265960.

X. L. Ma, Z. M. Tao, Y. H. Wang, H. Y. Yu, Y. P. Wang. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, vol. 54, pp. 187–197, 2015. DOI: https://doi.org/10.1016/j.trc.2015.03.014.

J. D. Zheng, H. Y. Pan, S. B. Yang, J. S. Cheng. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis. Mechanical Systems and Signal Processing, vol. 99, pp. 229–243, 2018. DOI: https://doi.org/10.1016/j.ymssp.2017.06.011.

H. Zou, T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301–320, 2005. DOI: https://doi.org/10.1111/j.1467-9868.2005.00503.x.

A. E. Hoerl, R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, vol. 12, no. 1, pp. 55–67, 1970. DOI: https://doi.org/10.1080/00401706.1970.10488634.