Efficient Yet Accessible Arduino-based Control System for Laser Microfabrication of Photonic Platforms
Tóm tắt
Laser Microfabrication (LMF) has been widely employed in a broad range of applications based on linear and nonlinear optics phenomena. Thus, this work aims to develop an Arduino-controlled low-cost LMF setup with high quality and precision. The LMF setup comprises a homemade optical microscope, a motorized 3-D translation stage based on low-cost stepper motors and current driver, and a relay module to control the hard disk shutter switch. We show that the microfabrication setup is capable of a precise XY translation motion with 25 mm travel range and scanning speeds as high as 1350 μm/s, with a resolution of 315 nm while presenting high precision and repeatability (tiny backlash < 0.5 μm). In order to test the experimental setup, we measured the influence of the laser pulses number and power on the microstructure profile in azochromophores-based electro-optical films and revealed the versatility of the LMF system to microfabricate plasmonic structures.
Tài liệu tham khảo
Almeida, G.F.B., Almeida, J.M.P., Martins, R.J., De Boni, L., Arnold, C.B., Mendonca, C.R.: Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass, Laser Phys. 28 (2018). https://doi.org/10.1088/1555-6611/aa8ac2
Chen, F., de Aldana, J.R.V.: Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining. Laser Photonics Rev. 8, 251–275 (2014). https://doi.org/10.1002/lpor.201300025
Cirkinoglu, H.O., Bayer, M.M., Serpenguzel, A., Rampini, S., Sotillo, B., Bharadwaj, V., Ramponi, R., Eaton, S.M.: Femtosecond laser written diamond waveguide excitation of the whispering gallery modes in a silicon microsphere. Opt. Mater. 92, 418–424 (2019). https://doi.org/10.1016/j.optmat.2019.01.005
Fu, W.Y., Hui, K.N., Wang, X.H., Wong, K.K.Y., Lai, P.T., Choi, H.W.: Geometrical Shaping of InGaN Light-Emitting Diodes by Laser Micromachining. IEEE Photonics Technol. Lett. 21, 1078–1080 (2009). https://doi.org/10.1109/lpt.2009.2022751
Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nat. Photonics. 2, 219–225 (2008). https://doi.org/10.1038/nphoton.2008.47
LaFratta, C.N., Fourkas, J.T., Baldacchini, T., Farrer, R.A.: Multiphoton fabrication. Angew. Chem. Int. Ed. 46, 6238–6258 (2007). https://doi.org/10.1002/anie.200603995
Lin, J.T., Xu, Y.X., Fang, Z.W., Wang, M., Song, J.X., Wang, N.W., Qiao, L.L., Fang, W., Cheng, Y.: Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining, Sci. Rep. 5 (2015). https://doi.org/10.1038/srep08072
Shimada, H., Kato, S., Watanabe, T., Yamaguchi, M.: Direct laser processing of two-scale periodic structures for superhydrophobic surfaces using a nanosecond pulsed laser. Lasers Manuf. Mater. Process. 7, 496–512 (2020). https://doi.org/10.1007/s40516-020-00130-2
Ismail, R.A., Hamoudi, K.W., Shakir, Z.S.: Modifications of Hydroxyapatite properties by nanosecond Nd: YAG laser pulses. Lasers Manuf. Mater. Process. 7, 305–316 (2020). https://doi.org/10.1007/s40516-020-00123-1
Assis, M., Ribeiro, R.A.P., Costa, M.H.C., Teixeira, M.M., Gobato, Y.G., Prando, G.A., Mendonca, C.R., de Boni, L., de Oliveira, A.J.A., Bettini, J., Andres, J., Longo, E.: Unconventional magnetization generated from electron beam and femtosecond irradiation on alpha-Ag2WO4: A quantum chemical investigation. ACS Omega. 5, 10052–10067 (2020). https://doi.org/10.1021/acsomega.0c00542
Garcia-Lechuga, M., Uteza, O., Sanner, N., Grojo, D.: Evidencing the nonlinearity independence of resolution in femtosecond laser ablation. Opt. Lett. 45, 952–955 (2020). https://doi.org/10.1364/ol.382610
New, G.H.C.: Nonlinear optics: the first 50 years. Contemp. Phys. 52, 281–292 (2011). https://doi.org/10.1080/00107514.2011.588485
Vivas, M.G., De Sousa, J.C.L., De Boni, L., Schiavon, M.A., Mendonca, C.R.: Observation of distinct two-photon transition channels in CdTe quantum dots in a regime of very strong confinement. Materials 10, 1–8 (2017). https://doi.org/10.3390/ma10040363
Vivas, M.G., De Boni, L., Cooper, T.M., Mendonca, C.R.: Interpreting strong two-photon absorption of PE3 platinum acetylide complex: double resonance and excited state absorption. ACS Photonics 1, 106–113 (2014). https://doi.org/10.1021/ph4000357
Vivas, M.G., De Boni, L., Mendonca, C.R.: Two-photon spectroscopy of organic materials. In: Gupta, V.P. (ed.) Molecular and laser spectroscopy, pp. 165–188. Elsevier, Amsterdam (2018)
Tollefson, J.: ‘Tropical Trump’ sparks crisis for Brazilian science. Nature. 572, 161–162 (2019). https://doi.org/10.1038/d41586-019-02353-6
Salazar-Serrano, L.J., Torres, J.P., Valencia, A.: A 3D printed toolbox for opto-mechanical components. PLoS One. 12 (2017). https://doi.org/10.1371/journal.pone.0169832
O’Connor, T., Doblas, A., Javidi, B.: Structured illumination in compact and field-portable 3D-printed shearing digital holographic microscopy for resolution enhancement. Opt. Lett. 44, 2326–2329 (2019). https://doi.org/10.1364/ol.44.002326
Romero, A.L.S., Barbano, E.C., Misoguti, L.: Computerized system for sample displacement with stepper motor using the L298: application in the Z-scan technique. Rev. Bras. Ensino Física 41, e20190018 (2019). https://doi.org/10.1590/1806-9126-RBEF-2019-0018
Campbell, R.A.A., Eifert, R.W., Turner, G.C.: Openstage: A low-cost motorized microscope stage with sub-micron positioning accuracy. PLoS One. 9 (2014). https://doi.org/10.1371/journal.pone.0088977
Rivera-Ortega, U., Hernandez-Gomez, C.R., Vega-Torres, G., Lopez-Medina, M.E.: Simple apparatus to calculate the refractive index of liquids based on Snell’s law. Measurement. 134, 658–661 (2019). https://doi.org/10.1016/j.measurement.2018.10.037
Aschenbrenner, D., Friedrich, O., Gilbert, D.F.: 3D Printed lab-on-a-chip platform for chemical stimulation and parallel analysis of ion channel function. Micromachines. 10 (2019). https://doi.org/10.3390/mi10080548
Vaidya, N., Solgaard, O.: 3D printed optics with nanometer scale surface roughness. Microsyst. Nanoeng. 4 (2018). https://doi.org/10.1038/s41378-018-0015-4
Winters, B.J., Shepler, D.: 3D printable optomechanical cage system with enclosure. HardwareX 3, 62–81 (2018)
Zachariadou, K., Yiasemides, K., Trougkakos, N.: A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells. Eur. J. Phys. 33, 1599–1610 (2012). https://doi.org/10.1088/0143-0807/33/6/1599
Schoenmaker, J., Martins, P.G., da Silva, G.C.M., Teixeira, J.C.: Model, simulation and experiments for a Buoyancy Organic Rankine Cycle. Eur. Phys. J. Appl. Phys. 92 (2020). https://doi.org/10.1051/epjap/2020200113
Grassini, S., Corbellini, S., Parvis, M., Angelini, E., Zucchi, F.: A simple Arduino-based EIS system for in situ corrosion monitoring of metallic works of art. Measurement. 114, 508–514 (2018). https://doi.org/10.1016/j.measurement.2016.07.014
Tomazio, N.B., Romero, A.L.S., Mendonca, C.R.: The development of an optical shutter from a computer hard disk. Rev. Bras. Ensino Física. 40 e1307 (2018). https://doi.org/10.1590/1806-9126-RBEF-2017-0200
Chaudry, A.M.: Using arduino uno microcontroller to create interest in physics. Phys. Teach. 58, 418 (2020). https://doi.org/10.1119/10.0001841
Tribuzi, V., Fonseca, R.D., Correa, D.S., Mendonca, C.R.: Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer. Opt. Mater. Express 3, 21–26 (2013). https://doi.org/10.1364/ome.3.000021
Kovach, A., He, J.H., Saris, P.J.G., Chen, D.Y., Armani, A.M.: Optically tunable microresonator using an azobenzene monolayer. Aip Adv. 10 (2020). https://doi.org/10.1063/1.5143253
Silva, L.M., Silva, D.L., Boas, M.V., Bretonniere, Y., Andraud, C., Vivas, M.G.: Probing the high performance of photoinduced birefringence in V-shaped azo/PMMA guest–host films. RSC Adv. 10, 40806–40814 (2020). https://doi.org/10.1039/D0RA08379H
Machado, L.M., Samad, R.E., Rossi, W., Vieira Junior, N.D.: D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses. Opt. Express. 20, 4114–4123 (2012). https://doi.org/10.1364/OE.20.004114
Kuroiwa, Y., Tatsuma, T.: Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles. ACS Appl. Nano Mater. 3, 2472–2479 (2020). https://doi.org/10.1021/acsanm.9b02560
Live, L.S., Masson, J.F.: High sensitivity of plasmonic microstructures near the transition from short-range to propagating surface plasmon. J. Phys. Chem. C 113, 10052–10060 (2009). https://doi.org/10.1021/jp9020273