Foreground segmentation using convolutional neural networks for multiscale feature encoding
Tài liệu tham khảo
Brutzer, 2011, Evaluation of background subtraction techniques for video surveillance, 1937
Porikli, 2003, Human body tracking by adaptive background models and mean-shift analysis, 1
Zhu, 2015, Human action recognition based on fusion features extraction of adaptive background subtraction and optical flow model, Math. Probl. Eng., 2015, 10.1155/2015/387464
Cheung, 2004, Robust techniques for background subtraction in urban traffic video, 5308, 881, 10.1117/12.526886
Szegedy, 2015, Going deeper with convolutions, 1
Farabet, 2013, Learning hierarchical features for scene labeling, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1915, 10.1109/TPAMI.2012.231
S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, K. Saenko, Translating videos to natural language using deep recurrent neural networks, arXiv:1412.4729
Maddalena, 2015, Towards benchmarking scene background initialization, 469
Mahadevan, 2010, Spatiotemporal saliency in dynamic scenes, IEEE Trans. Pattern Anal. Mach. Intell., 32, 171, 10.1109/TPAMI.2009.112
KaewTraKulPong, 2002, An improved adaptive background mixture model for real-time tracking with shadow detection, Video-based Surveill. Syst., 1, 135, 10.1007/978-1-4615-0913-4_11
Zivkovic, 2004, Improved adaptive gaussian mixture model for background subtraction, Vol. 2, 28
Barnich, 2011, Vibe: a universal background subtraction algorithm for video sequences, IEEE Trans. Image Process., 20, 1709, 10.1109/TIP.2010.2101613
St-Charles, 2015, Subsense: a universal change detection method with local adaptive sensitivity, IEEE Trans. Image Process., 24, 359, 10.1109/TIP.2014.2378053
M. Babaee, D.T. Dinh, G. Rigoll, A deep convolutional neural network for background subtraction, arXiv:1702.01731 (2017).
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv:1502.03167 (2015).
He, 2009, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng., 21, 1263, 10.1109/TKDE.2008.239
Chawla, 2004, Special issue on learning from imbalanced data sets, ACM Sigkdd Explor. Newslett., 6, 1, 10.1145/1007730.1007733