End-to-end video background subtraction with 3d convolutional neural networks

Multimedia Tools and Applications - Tập 77 - Trang 23023-23041 - 2017
Dimitrios Sakkos1, Heng Liu2, Jungong Han3, Ling Shao4
1Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
2School of Computer Science and of Technology, Anhui University of Technology, Anhui Sheng, China
3School of Computing and Communications, Lancaster University, Lancaster, UK
4School of Computer Sciences, University of East Anglia, Norwich, UK

Tóm tắt

Background subtraction in videos is a highly challenging task by definition, as it lays on a pixel-wise classification level. Therefore, great attention to detail is essential. In this paper, we follow the success of Deep Learning in Computer Vision and present an end-to-end system for background subtraction in videos. Our model is able to track temporal changes in a video sequence by applying 3D convolutions to the most recent frames of the video. Thus, no background model is needed to be retained and updated. In addition, it can handle multiple scenes without further fine-tuning on each scene individually. We evaluate our system on the largest dataset for change detection, CDnet, with over 50 videos which span across 11 categories. Further evaluation is performed in the ESI dataset which features extreme and sudden illumination changes. Our model surpasses the state-of-the-art on both datasets according to the average ranking of the models over a wide range of metrics.

Tài liệu tham khảo

Allebosch G, Van Hamme D, Deboeverie F, Veelaert P, Philips W (2016) C-EFIC: Color and Edge Based Foreground Background Segmentation with Interior Classification. Springer International Publishing, Cham, pp 433–454. https://doi.org/10.1007/978-3-319-29971-6_23 Babaee M, Dinh DT, Rigoll G (2017) A deep convolutional neural network for background subtraction. CoRR arXiv:1702.01731 Barnich O, Van Droogenbroeck M (2011) ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724. https://doi.org/10.1109/TIP.2010.2101613 Bianco S, Ciocca G, Schettini R (2015) How far can you get by combining change detection algorithms? International Conference on Image Analysis and Processing (ICIPA), LNCS, Vol. 10484, pp 96–107, 2017 Bouwmans T, Zahzah EH (2014) Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance. Comput Vis Image Underst 122:22–34. https://doi.org/10.1016/j.cviu.2013.11.009 Braham M, Van Droogenbroeck M (2016) Deep background subtraction with scene-specific convolutional neural networks. International Conference on Systems, Signals and Image Processing. https://doi.org/10.1109/IWSSIP.2016.7502717 Brutzer S, Hoferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 1937–1944. https://doi.org/10.1109/CVPR.2011.5995508 Caelles S, Maninis K, Pont-Tuset J, Leal-Taixe L, Cremers D, Gool LV (2016) One-shot video object segmentation. CoRR arXiv:1611.05198 Candes EJ, Li X, Ma Y, Wring J (2011) Robust principal component analysis?. J Assoc Comput Mach 53(3):3179–213. https://doi.org/10.1162/neco.2009.02-08-706. http://www.ncbi.nlm.nih.gov/pubmed/22481823 Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2015) Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR arXiv:1412.7062 Chen Y, Wang J, Lu H (2015) Learning sharable models for robust background subtraction. In: Proceedings - IEEE International Conference on Multimedia and Expo, vol. 2015-August. https://doi.org/10.1109/ICME.2015.7177419 Cheng G, Zhou P, Han J (2016) Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7405–7415. https://doi.org/10.1109/TGRS.2016.2601622 Cheng G, Han J, Lu X (2017) Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc IEEE 105:1865–883. https://doi.org/10.1109/JPROC.2017.2675998 Cheng G, Li Z, Yao X, Guo L, Wei Z (2017) Remote sensing image scene classification using bag of convolutional features. IEEE Geosci Remote Sens Lett 14:1735–1739. https://doi.org/10.1109/LGRS.2017.2731997 Cheung SCS, Kamath C (2005) Robust background subtraction with foreground validation for urban traffic video. Eurasip J Appl Signal Process 2005(14):2330–2340. https://doi.org/10.1155/ASP.2005.2330 Eigen D, Krishnan D, Fergus R (2013) Restoring an image taken through a window covered with dirt or rain. In: Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV ’13. IEEE Computer Society, Washington, pp 633–640. https://doi.org/10.1109/ICCV.2013.84 Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. Proc ECCV 1843:751–767. https://doi.org/10.1007/3-540-45053. http://www.springerlink.com/index/3mcvhnwfa8bj4ln5.pdf%5Cn. http://link.springer.com/chapter/10.1007/3-540-45053-X_48 Friedman N, Russell S (1997) Image segmentation in video sequences: a probabilistic approach. Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pp 175–181. https://doi.org/10.1016/j.cviu.2007.08.003. arXiv:1302.1539 Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2012) Changedetection.net: A new change detection benchmark dataset. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp 1–8. https://doi.org/10.1109/CVPRW.2012.6238919 Han B (2007) Real-time subspace-based background modeling using multi-channel data. Advances in Visual Computing pp. 162–172. https://doi.org/10.1007/978-3-540-76856-2_16. http://www.springerlink.com/index/R27567374R236621.pdf He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778. https://doi.org/10.1109/CVPR.2016.90. http://ieeexplore.ieee.org/document/7780459/ Jeeva S, Sivabalakrishnan M (2015) Survey on background modeling and foreground detection for real time video surveillance. In: Procedia Computer Science, vol 50, pp 566–571. https://doi.org/10.1016/j.procs.2015.04.085 Ji S, Yang M, Yu K, Xu W (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–31. https://doi.org/10.1109/TPAMI.2012.59. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=?6165309%5Cn. http://www.ncbi.nlm.nih.gov/pubmed/22392705 Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093 Jiang S, Lu X (2017) WeSamBE: A weight-sample-based method for background subtraction. IEEE Trans Circ Syst Video Technol PP(99):1–1. https://doi.org/10.1109/TCSVT.2017.2711659. http://ieeexplore.ieee.org/document/7938679/ Kaewtrakulpong P, Bowden R (2001) An improved adaptive background mixture model for real- time tracking with shadow detection. Advanced Video Based Surveillance Systems:1–5. http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1725–1732. https://doi.org/10.1109/CVPR.2014.223 Kim W, Jung C (2017) Illumination-invariant background subtraction: Comparative review, models, and prospects. IEEE Access 5:8369–384 Krizhevsky A, Sutskever I, Geoffrey EH (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25(NIPS2012):1–9. https://doi.org/10.1109/5.726791 Lan X, Ma AJ, Yuen PC (2014) Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1194–1201. https://doi.org/10.1109/CVPR.2014.156 Lan X, Ma AJ, Yuen PC, Chellappa R (2015) Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans Image Process 24(12):5826–5841. https://doi.org/10.1109/TIP.2015.2481325 Lan X, Shengping Z, Yuen PC (2016) Robust joint discriminative feature learning for visual tracking. In: IJCAI International Joint Conference on Artificial Intelligence, pp 3403–3410 Lan X, Yuen PC, Chellappa R (2017) Robust mil-based feature template learning for object tracking. In: AAAI, pp 4118–4125 Liu R, Lin Z, Wei S, Su Z (2011) Solving principal component pursuit in linear time via l1 filtering. arXiv:1108.5359 Liu Z, Li X, Luo P, Loy CC, Tang X (2015) Semantic image segmentation via deep parsing network. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 International Conference on Computer Vision, ICCV 2015, pp 1377–1385. https://doi.org/10.1109/ICCV.2015.162 Liu R, Lan X, Yuen PC, C Feng G (2016) Robust visual tracking using dynamic feature weighting based on multiple dictionary learning. In: EUSIPCO, pp 2166–2170. https://doi.org/10.1109/EUSIPCO.2016.7760632 Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7298965%5Cn. arXiv:1411.4038 Mittal A, Paragios N (2004) Motion-based background subtraction using adaptive kernel density estimation. Comput Vis Pattern Recogn 2:302–309. https://doi.org/10.1109/CVPR.2004.1315179. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=?1315179 Oliver N, Rosario B, Pentland A (1999) A Bayesian computer vision system for modeling human interactions. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 1542, pp 255–272. https://doi.org/10.1007/3-540-49256-9_16 Pilet J, Strecha C, Fua P (2008) Making background subtraction robust to sudden illumination changes. https://doi.org/10.1007/978-3-540-88693-8-42 Pinheiro PHOP, Collobert R (2013) Recurrent convolutional neural networks for scene parsing. Proc 31st Int Conf Mach Learn 32(June):82–90. https://doi.org/10.1109/ICCV.2015.221. arXiv:1306.2795%5Cn. http://infoscience.epfl.ch/record/192577/files/Pinheiro_Idiap-RR-41-2013.pdf%5Cn. http://jmlr.org/proceedings/papers/v32/pinheiro14.html Results for cd.net 2014. http://wordpress-jodoin.dmi.usherb.ca/results2014/. Accessed: 2017-07-30 Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28. arXiv:1505.04597%5Cn Sajid H, Cheung SCS (2017) Universal multimode background subtraction. IEEE Trans Image Process 26(7):3249–3260. https://doi.org/10.1109/TIP.2017.2695882. http://ieeexplore.ieee.org/document/7904604/ Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR arXiv:1312.6229 Simonyan K, Zisserman A (2015) Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations (ICRL), pp 1–14. https://doi.org/10.1016/j.infsof.2008.09.005. arXiv:1409.1556 Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21. https://doi.org/10.1016/j.cviu.2013.12.005 St-Charles PL, Bilodeau GA, Bergevin R (2015) A self-adjusting approach to change detection based on background word consensus. In: Proceedings - 2015 IEEE Winter Conference on Applications of Computer Vision, WACV 2015, pp 990–997. https://doi.org/10.1109/WACV.2015.137 St-Charles PL, Bilodeau GA, Bergevin R (2015) SuBSENSE: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process: Publ IEEE Signal Process Soc 24(1):359–73. https://doi.org/10.1109/TIP.2014.2378053. http://www.ncbi.nlm.nih.gov/pubmed/25494507 Stefano LD, Tombari F, Mattoccia S (2007) Robust and accurate change detection under sudden illumination variations. ACCV’07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-P-02, pp 103–109. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Robust+and+accurate+change+detection+under+sudden+illumination+variations#0 Torre FD, Black MJ (2003) A framework for robust subspace learning. Int J Comput Vis 54(1):117–142. https://doi.org/10.1023/A:1023709501986. http://www.springerlink.com/index/R8532J45384R3123.pdf Tran D, Bourdev LD, Fergus R, Torresani L, Paluri M (2014) C3D: generic features for video analysis. CoRR arXiv:1412.0767 Tuzel O, Porikli F, Meer P (2005) A bayesian approach to background modeling. 2005 IEEE Comput Soc Conf Comput Vis Pattern Recogn (CVPR’05) - Workshops 3:58–58. https://doi.org/10.1109/CVPR.2005.384. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=?1565362 Vosters L, Shan C, Gritti T (2012) Real-time robust background subtraction under rapidly changing illumination conditions. Image Vis Comput 30 (12):1004–1015. https://doi.org/10.1016/j.imavis.2012.08.017 Wang D, Wang B, Zhao S, Yao H, Liu H (2017) View-based 3d object retrieval with discriminative views. Neurocomputing 252:58–66. https://doi.org/10.1016/j.neucom.2016.06.095 Wang R, Bunyak F, Seetharaman G, Palaniappan K (2014) Static and moving object detection using flux tensor with split gaussian models. In: IEEE Computer Society Conference on Computer Visxion and Pattern Recognition Workshops, pp 420–424. https://doi.org/10.1109/CVPRW.2014.68 Wang Y, Jodoin PM, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) CDnet 2014: An expanded change detection benchmark dataset. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp 393–400. https://doi.org/10.1109/CVPRW.2014.126 Wang Y, Luo Z, Jodoin PM (2016) Interactive deep learning method for segmenting moving objects. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2016.09.014. http://www.sciencedirect.com/science/article/pii/S0167865516302471 Yao X, Han J, Cheng G, Qian X, Guo L (2016) Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans Geosci Remote Sens 54(6):3660–3671. https://doi.org/10.1109/TGRS.2016.2523563 Yao C, Liu YF, Jiang B, Han J, Han J (2017) LLE score: a new filter-based unsupervised feature selection method based on nonlinear manifold embedding and its application to image recognition. https://doi.org/10.1109/TIP.2017.2733200 Yao X, Han J, Zhang D, Nie F (2017) Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering. IEEE Trans Image Process 26(7):3196–3209. https://doi.org/10.1109/TIP.2017.2694222 Zhang S, Yao H, Liu S (2008) Dynamic background modeling and subtraction using spatio-temporal local binary patterns. In: Proceedings - International Conference on Image Processing, ICIP, pp 1556–1559. https://doi.org/10.1109/ICIP.2008.4712065 Zhang S, Yao H, Liu S, Chen X, Gao W (2008) A covariance-based method for dynamic background subtraction. 2008 19th International Conference on Pattern Recognition, pp 4–7. https://doi.org/10.1109/ICPR.2008.4761162 Zhang S, Yao H, Liu S (2009) Dynamic background subtraction based on local dependency histogram. Int J Pattern Recogn Artif Intell 23 (07):1397. https://doi.org/10.1142/S0218001409007569. http://www.worldscinet.com/ijprai/23/2307/S0218001409007569.html Zhao S, Chen L, Yao H, Zhang Y, Sun X (2015) Strategy for dynamic 3d depth data matching towards robust action retrieval. Neurocomputing 151:533–543. https://doi.org/10.1016/j.neucom.2014.03.092 Zhao S, Yao H, Zhang Y, Wang Y, Liu S (2015) View-based 3d object retrieval via multi-modal graph learning. Signal Process 112:110–118. https://doi.org/10.1016/j.sigpro.2014.09.038 Zhao S, Yao H, Gao Y, Ji R, Xie W, Jiang X, Chua TS (2016) Predicting personalized emotion perceptions of social images. In: Proceedings of the 2016 ACM on Multimedia Conference, MM’16. ACM, New York, pp 1385–1394. https://doi.org/10.1145/2964284.2964289 Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. Trans Multimed 19(3):632–645. https://doi.org/10.1109/TMM.2016.2617741 Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PHS (2015) Conditional random fields as recurrent neural networks. Iccv, pp 1529–1537. https://doi.org/10.1109/ICCV.2015.179 Zhou T, Tao D (2011) GoDec: Randomized Low-rank & Sparse Matrix Decomposition in Noisy Case. ICML, p 8. https://doi.org/10.1109/TPAMI.2012.88. http://techtalks.tv/talks/54296/%5Cn. http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Zhou_41.pdf Zhu Q, Shao L, Li Q, Xie Y (2013) Recursive kernel density estimation for modeling the background and segmenting moving objects. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1769–1772 Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, vol 2, pp 28–31. https://doi.org/10.1109/ICPR.2004.1333992. http://ieeexplore.ieee.org/document/1333992/ Zivkovic Z, Van Der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780. https://doi.org/10.1016/j.patrec.2005.11.005