13-W and 1000-Hz of a 2.7-µm laser on the 968 nm LD side-pumped Er:YAP crystal with concave end-faces

Optics Express - Tập 29 Số 14 - Trang 21655 - 2021
Cong Quan1,2, Dunlu Sun3,1, Huili Zhang3,1, Jianqiao Luo3,1, Lunzhen Hu1,2, Zhiyuan Han1,2, Kunpeng Dong1,2, Yuwei Chen1,2, Maojie Cheng3,1
1Hefei Institutes of Physical Science, Chinese Academy of Sciences
2University of Science and Technology of China
3Advanced Laser Technology Laboratory of Anhui Province

Tóm tắt

We demonstrate a 968-nm LD side-pumped Er:YAP laser with concave end-faces and a working frequency of 50∼1000 Hz. The maximum average powers of 26.75 and 13.18 W are obtained at 250 and 1000 Hz, corresponding to the slope efficiency of 16.2% and 9.0%, respectively. The M2 factors of 7.98 and 1.49 are determined under the multi-mode and single-mode, and three laser wavelengths of 2713, 2732 and 2796 nm are observed. The results indicate that the LD side-pumped Er:YAP crystal with negative curvature end-faces is a promising candidate for the high power and high frequency mid-infrared laser device.

Từ khóa


Tài liệu tham khảo

Fried, 2018, Biomed. Opt. Express, 9, 5026, 10.1364/BOE.9.005026

Alessandro, 2008, AIP Conf. Proc., 992, 415, 10.1063/1.2926899

Wang, 2019, Opt. Mater. Express, 9, 13, 10.1364/OME.9.000013

Vodopyanov, 2000, Opt. Lett., 25, 841, 10.1364/OL.25.000841

Hu, 2019, Opt. Lett., 44, 2201, 10.1364/OL.44.002201

Willer, 2006, Opt. Lasers Eng., 44, 699, 10.1016/j.optlaseng.2005.04.015

Fedorov, 2019, Opt. Express, 27, 13934, 10.1364/OE.27.013934

Doroshenko, 2016, Opt. Express, 24, 19824, 10.1364/OE.24.019824

Frolov, 2019, Opt. Lett., 44, 5453, 10.1364/OL.44.005453

Yao, 2020, Opt. Express, 28, 19000, 10.1364/OE.395802

Leuzinger, 1999, Opt. Photonics News, 10, 37, 10.1364/OPN.10.5.000037

Wang, 2020, Opt. Express, 28, 5189, 10.1364/OE.384435

Hong, 2017, Infrared Phys. Techn., 80, 38, 10.1016/j.infrared.2016.11.009

Šulc, 2013, Opt. Lett., 38, 3406, 10.1364/OL.38.003406

Švejkar, 2018, Opt. Mater. Express, 8, 1025, 10.1364/OME.8.001025

Zhang, 2019, Opt. Express, 27, 31783, 10.1364/OE.27.031783

Fan, 2016, Opt. Lett., 41, 540, 10.1364/OL.41.000540

Zhang, 2019, Infrared Phys. Techn., 97, 197, 10.1016/j.infrared.2018.12.031

Cui, 2019, Infrared Phys. Techn., 98, 256, 10.1016/j.infrared.2019.03.029

You, 2015, Opt. Lett., 40, 3846, 10.1364/OL.40.003846

Zhao, 2018, Opt. Lett., 43, 4312, 10.1364/OL.43.004312

Quan, 2018, Opt. Express, 26, 28421, 10.1364/OE.26.028421

Hou, 2020, Opt. Mater. Express, 10, 2730, 10.1364/OME.405683

Bromberger, 2011, Opt. Express, 19, 6505, 10.1364/OE.19.006505

Kawase, 2019, Appl. Phys. Express, 12, 102006, 10.7567/1882-0786/ab3e61

Xu, 2011, Proc. SPIE, 19, 25860, 10.1364/OE.19.025860

Messner, 2018, Appl. Opt., 57, 1497, 10.1364/AO.57.001497

Ye, 2019, Appl. Opt., 58, 9949, 10.1364/AO.58.009949

Hu, 2020, Infrared Phys. Techn., 105, 103224, 10.1016/j.infrared.2020.103224

Wang, 2015, Laser Phys. Lett., 12, 105004, 10.1088/1612-2011/12/10/105004