Virology Journal

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Gene silencing in HIV-1 latency by polycomb repressive group
Virology Journal - Tập 8 - Trang 1-7 - 2011
Hyeon Guk Kim, Kyung-Chang Kim, Tae-Young Roh, Jihwan Park, Kyung-Min Jung, Joo-Shil Lee, Sang-Yun Choi, Sung Soon Kim, Byeong-Sun Choi
The persistence of latently Human immunodeficiency virus-1 (HIV-1) infected cellular reservoirs in resting CD4+ T cells is a major obstacle to HIV-1 eradication. The detailed mechanism of HIV-1 latency remains unclear. We investigated histones and their post-translational modification associated with HIV-1 latency in novel HIV-1 latently infected cell lines established previously, NCHA cells. To examine histones and their modification linked with HIV-1 latency, the expression profiles for core histone proteins and histone deacetylases (HDACs) in NCHA cells were characterized by RT-PCR, ELISA, and western blot. The levels of histone acetylation and methylation at histone H3 Lys9 (H3K9) and Lys27 (H3K27) in HIV-1 latently infected cells were analyzed by western blot and chromatin immunoprecipitation-sequencing (ChIP-seq). The expression levels for four core histone proteins (H2A, H2B, H3 and H4) and HDACs (HDAC1-8) in NCHA cells were not significantly different from those in their parental cells. Histone H3K9 and H3K27 acetylations in NCHA cells showed no difference in parental and NCHA cells, whereas the levels of di- and tri-methylation were increased in NCHA cells. The expression of EED which is a component of polycomb repressive complex 2 (PRC2), and BMI1 and RING2 which are constituents of PRC1, were upregulated in NCHA cells. In addition, more ubiquitylation at histone H2A was detected in NCHA cells. Our results suggest that tri-methylation of histone H3K27 and H2A ubiquitylation via polycomb group protein may play a crucial role in epigenetic silencing accounting for HIV-1 latency in NCHA cells.
Characterization of a novel papillomavirus identified from a whale (Delphinapterus leucas) pharyngeal metagenomic library
Virology Journal - Tập 20 - Trang 1-8 - 2023
Xiang Lu, Rong Zhu, Ziyuan Dai
Here, using viral metagenomic method, a novel whale papillomavirus (temporarily named wPV, GenBank accession number OP856597) was discovered in a whale (Delphinapterus leucas) pharyngeal metagenomic library. The complete genome size of wPV is 7179 bp, with GC content of 54.4% and a nucleotide composition of 23.4% A, 22.3% T, 28.4% G, and 25.9% C. The viral genome has a typical papillomavirus organization pattern, and five ORFs were predicted, including two late genes encoding L1 and L2, and three early genes encoding E1, E2, and E6. Pairwise sequence comparison and phylogenetic analysis based on the L1 gene sequence indicated that wPV may be a novel species within genus Dyodeltapapillomavirus. In addition, the E2 region of wPV was predicted to have a potential recombination event. The discovery of this novel papillomavirus increases our understanding of the viral ecology of marine mammals, providing insights into possible future infectious diseases.
ADAR1p110 promotes Enterovirus D68 replication through its deaminase domain and inhibition of PKR pathway
Virology Journal - Tập 19 - Trang 1-12 - 2022
Kehan Zhang, Siyuan Wang, Tingting Chen, Zeng Tu, Xia Huang, Guangchao Zang, Chun Wu, Xinyue Fan, Jia Liu, Yunbo Tian, Yong Cheng, Nan Lu, Guangyuan Zhang
Severe respiratory and neurological diseases caused by human enterovirus D68 (EV-D68) pose a serious threat to public health, and there are currently no effective drugs and vaccines. Adenosine deaminase acting on RNA1 (ADAR1) has diverse biological functions in various viral infections, but its role in EV-D68 infections remains undetermined. Rhabdomyosarcoma (RD) and human embryonic kidney 293 T (293 T) cells, and HeLa cells were used to evaluate the expression level of ADAR1 upon EV-D68 (Fermon strain) and human parainfluenza virus type 3 (HPIV3; NIH47885) infection, respectively. Knockdown through silencing RNA (siRNA) and overexpression of either ADAR1p110 or ADAR1p150 in cells were used to determine the function of the two proteins after viral infection. ADAR1p110 double-stranded RNA binding domains (dsRBDs) deletion mutation was generated using a seamless clone kit. The expression of ADAR1, EV-D68 VP1, and HPIV3 hemagglutinin–neuraminidase (HN) proteins was identified using western blotting. The median tissue culture infectious dose (TCID50) was applied to detect viral titers. The transcription level of EV-D68 mRNA was analyzed using reverse transcription-quantitative PCR (RT-qPCR) and the viral 5′-untranslated region (5′-UTR)-mediated translation was analyzed using a dual luciferase reporter system. We found that the transcription and expression of ADAR1 was inhibited upon EV-D68 infection. RNA interference of endogenous ADAR1 decreased VP1 protein expression and viral titers, while overexpression of ADAR1p110, but not ADAR1p150, facilitated viral replication. Immunofluorescence assays showed that ADAR1p110 migrated from the nucleus to the cytoplasm after EV-D68 infection. Further, ADAR1p110 lost its pro-viral ability after mutations of the active sites in the deaminase domain, and 5′-UTR sequencing of the viral genome revealed that ADAR1p110 likely plays a role in EV-D68 RNA editing. In addition, after ADAR1 knockdown, the levels of both phosphorylated double-stranded RNA dependent protein kinase (p-PKR) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α) increased. Attenuated translation activity of the viral genome 5′-UTR was also observed in the dual-luciferase reporter assay. Lastly, the deletion of ADAR1p110 dsRBDs increased the level of p-PKR, which correlated with a decreased VP1 expression, indicating that the promotion of EV-D68 replication by ADAR1p110 is also related to the inhibition of PKR activation by its dsRBDs. Our study illustrates that ADAR1p110 is a novel pro-viral factor of EV-D68 replication and provides a theoretical basis for EV-D68 antiviral research.
Transmitted drug resistance and transmission clusters among HIV-1 treatment-naïve patients in Guangdong, China: a cross-sectional study
Virology Journal - Tập 18 - Trang 1-9 - 2021
Yun Lan, Linghua Li, Xiang He, Fengyu Hu, Xizi Deng, Weiping Cai, Junbin Li, Xuemei Ling, Qinghong Fan, Xiaoli Cai, Liya Li, Feng Li, Xiaoping Tang
Transmitted drug resistance (TDR) that affects the effectiveness of the first-line antiretroviral therapy (ART) regimen is becoming prevalent worldwide. However, its prevalence and transmission among HIV-1 treatment-naïve patients in Guangdong, China are rarely reported. We aimed to comprehensively analyze the prevalence of TDR and the transmission clusters of HIV-1 infected persons before ART in Guangdong. The HIV-1 treatment-naïve patients were recruited between January 2018 and December 2018. The HIV-1 pol region was amplified by reverse transcriptional PCR and sequenced by sanger sequencing. Genotypes, surveillance drug resistance mutations (SDRMs) and TDR were analyzed. Genetic transmission clusters among patients were identified by pairwise Tamura-Nei 93 genetic distance, with a threshold of 0.015. A total of 2368 (97.17%) HIV-1 pol sequences were successfully amplified and sequenced from the enrolled 2437 patients. CRF07_BC (35.90%, 850/2368), CRF01_AE (35.56%, 842/2368) and CRF55_01B (10.30%, 244/2368) were the main HIV-1 genotypes circulating in Guangdong. Twenty-one SDRMs were identified among fifty-two drug-resistant sequences. The overall prevalence of TDR was 2.20% (52/2368). Among the 2368 patients who underwent sequencing, 8 (0.34%) had TDR to protease inhibitors (PIs), 22 (0.93%) to nucleoside reverse transcriptase inhibitors (NRTIs), and 23 (0.97%) to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Two (0.08%) sequences showed dual-class resistance to both NRTIs and NNRTIs, and no sequences showed triple-class resistance. A total of 1066 (45.02%) sequences were segregated into 194 clusters, ranging from 2 to 414 sequences. In total, 15 (28.85%) of patients with TDR were included in 9 clusters; one cluster contained two TDR sequences with the K103N mutation was observed. There is high HIV-1 genetic heterogeneity among patients in Guangdong. Although the overall prevalence of TDR is low, it is still necessary to remain vigilant regarding some important SDRMs.
Bacteriophages: The viruses for all seasons of molecular biology
Virology Journal - Tập 2 - Trang 1-2 - 2005
Jim D Karam
Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."
Molecular characterization of Umbre virus (Bunyaviridae)
Virology Journal - Tập 5 - Trang 1-4 - 2008
Pragya D Yadav, Akhilesh C Mishra, Devendra T Mourya
Umbre (UMB) virus was first isolated from India in 1955 and classified as Orthobunyavirus (Turlock serogroup). Eight isolates of this virus, isolated from Culex mosquitoes were characterized on the basis of partial glycoprotein (G2) gene. Twenty-six percent differences at nucleotide level while 17% differences at amino acid level were noted within different isolates. Phylogentic data shows that this virus represents a distinct group within the genus Orthobunyavirus.
Attenuation of an adult T-cell leukemia skin lesion after treatment of a concomitant herpes simplex infection: a case study
Virology Journal - Tập 9 - Trang 1-4 - 2012
Hajime Tomita, Fumihide Ogawa, Sayaka Kuwatsuka, Fumi Toriyama, Shinichirou Yasumoto, Shimeru Kamihira, Atsushi Utani
We report the development and treatment of eczema herpeticum in a 51-year-old male suffering from adult T-cell leukemia (ATL). Lesions of eczema herpeticum coexisted with the skin lesions of ATL. Treatment of eczema herpeticum resulted in a concomitant improvement in the symptoms of ATL, including a reduction in the size of the ATL plaques, for over 2 months before relapse.
Establishment of national reference for bunyavirus nucleic acid detection kits for diagnosis of SFTS virus
Virology Journal - - 2017
Lixin Xu, Ling Wang, Dongting Bai, Yuhua Li
Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue
Virology Journal - Tập 4 - Trang 1-10 - 2007
Sailesh C Harwani, Nell S Lurain, M Reza Zariffard, Gregory T Spear
Human cytomegalovirus (HCMV) can be acquired sexually and is shed from the genital tract. Cross-sectional studies in women show that changes in genital tract microbial flora affect HCMV infection and/or shedding. Since genital microbial flora may affect HCMV infection or replication by stimulating cells through Toll-like receptors (TLR), we assessed the effects of defined TLR-ligands on HCMV replication in foreskin fibroblasts and ectocervical tissue. Poly I:C (a TLR3-ligand) and lipopolysaccharide (LPS, a TLR4-ligand) inhibited HCMV and induced secretion of IL-8 and Interferon-beta (IFNβ) in both foreskin fibroblasts and ectocervical tissue. The anti-HCMV effect was reversed by antibody to IFNβ. CpG (TLR9 ligand) and lipoteichoic acid (LTA, TLR2 ligand) also inhibited HCMV infection in ectocervical tissue and this anti-HCMV effect was also reversed by anti-IFNβ antibody. In contrast, LTA and CpG did not inhibit HCMV infection in foreskin fibroblasts. This study shows that TLR ligands induce an HCMV-antiviral effect that is mediated by IFNβ suggesting that changes in genital tract flora may affect HCMV infection or shedding by stimulating TLR. This study also contrasts the utility of two models that can be used for assessing the interaction of microbial flora with HCMV in the genital tract. Clear differences in the response to different TLR ligands suggests the explant model more closely reflects in vivo responses to genital infections.
Study of SV40 large T antigen nucleotide specificity for DNA unwinding
Virology Journal - Tập 14 - Trang 1-12 - 2017
Damian Wang, Ana Lucia Álvarez-Cabrera, Xiaojiang S. Chen
Simian Virus 40 (SV40) Large Tumor Antigen (LT) is an essential enzyme that plays a vital role in viral DNA replication in mammalian cells. As a replicative helicase and initiator, LT assembles as a double-hexamer at the SV40 origin to initiate genomic replication. In this process, LT converts the chemical energy from ATP binding and hydrolysis into the mechanical work required for unwinding replication forks. It has been demonstrated that even though LT primarily utilizes ATP to unwind DNA, other NTPs can also support low DNA helicase activity. Despite previous studies on specific LT residues involved in ATP hydrolysis, no systematic study has been done to elucidate the residues participating in the selective usage of different nucleotides by LT. In this study, we performed a systematic mutational analysis around the nucleotide pocket and identified residues regulating the specificity for ATP, TTP and UTP in LT DNA unwinding. We performed site-directed mutagenesis to generate 16 LT nucleotide pocket mutants and characterized each mutant’s ability to unwind double-stranded DNA, oligomerize, and bind different nucleotides using helicase assays, size-exclusion chromatography, and isothermal titration calorimetry, respectively. We identified four residues in the nucleotide pocket of LT, cS430, tK419, cW393 and cL557 that selectively displayed more profound impact on using certain nucleotides for LT DNA helicase activity. Little is known regarding the mechanisms of nucleotide specificity in SV40 LT DNA unwinding despite the abundance of information available for understanding LT nucleotide hydrolysis. The systematic residue analysis performed in this report provides significant insight into the selective usage of different nucleotides in LT helicase activity, increasing our understanding of how LT may structurally prefer different energy sources for its various targeted cellular activities.
Tổng số: 3,209   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10