Phylogenetic analyses of the polyprotein coding sequences of serotype O foot-and-mouth disease viruses in East Africa: evidence for interserotypic recombination
Tóm tắt
Foot-and-mouth disease (FMD) is endemic in East Africa with the majority of the reported outbreaks attributed to serotype O virus. In this study, phylogenetic analyses of the polyprotein coding region of serotype O FMD viruses from Kenya and Uganda has been undertaken to infer evolutionary relationships and processes responsible for the generation and maintenance of diversity within this serotype. FMD virus RNA was obtained from six samples following virus isolation in cell culture and in one case by direct extraction from an oropharyngeal sample. Following RT-PCR, the single long open reading frame, encoding the polyprotein, was sequenced. Phylogenetic comparisons of the VP1 coding region showed that the recent East African viruses belong to one lineage within the EA-2 topotype while an older Kenyan strain, K/52/1992 is a representative of the topotype EA-1. Evolutionary relationships between the coding regions for the leader protease (L), the capsid region and almost the entire coding region are monophyletic except for the K/52/1992 which is distinct. Furthermore, phylogenetic relationships for the P2 and P3 regions suggest that the K/52/1992 is a probable recombinant between serotypes A and O. A bootscan analysis of K/52/1992 with East African FMD serotype A viruses (A21/KEN/1964 and A23/KEN/1965) and serotype O viral isolate (K/117/1999) revealed that the P2 region is probably derived from a serotype A strain while the P3 region appears to be a mosaic derived from both serotypes A and O. Sequences of the VP1 coding region from recent serotype O FMDVs from Kenya and Uganda are all representatives of a specific East African lineage (topotype EA-2), a probable indication that hardly any FMD introductions of this serotype have occurred from outside the region in the recent past. Furthermore, evidence for interserotypic recombination, within the non-structural protein coding regions, between FMDVs of serotypes A and O has been obtained. In addition to characterization using the VP1 coding region, analyses involving the non-structural protein coding regions should be performed in order to identify evolutionary processes shaping FMD viral populations.
Tài liệu tham khảo
Belsham GJ: Translation and Replication of FMDV RNA. In 'Foot and mouth disease virus'. Curr Top Microbiol Immunol 2005, 288: 43-70. full_text
Coetzer JAW, Thomsen GR, Tustin RC, Kriek NPJ: Foot-and-mouth disease. In Infectious Diseases of Livestock with Special Reference to Southern Africa. Cape Town: Oxford University Press; 1994.
Domingo E, Escarmısa C, Martinez MA, Martinez-Salas E, Mateu MG: Foot-and-mouth disease virus populations are quasispecies. Curr Top Microbiol Immunol 1992, 176: 33-47.
Grubman MJ, Baxt B: Foot-and-Mouth disease. Clin Microbiol Rev 2004, 17: 465-493. 10.1128/CMR.17.2.465-493.2004
Knowles NJ, Samuel AR: Molecular epidemiology of foot-and-mouth disease virus. Virus Res 2003, 91: 65-80. 10.1016/S0168-1702(02)00260-5
Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL: Comparative Genomics of Foot and Mouth Disease. J Virol 2005, 70: 6487-6504. 10.1128/JVI.79.10.6487-6504.2005
Domingo E, Pariente N, Airaksinen A, Gonzalez-Lopez C, S S, Herrera M, Grande-Perez A, Lowenstein PR, Manrubia SC, Lazaro E, Escarm'ısa C: Foot and mouth disease virus: Exploring pathways towards virus extinction. Curr Top Microbiol Immunol 2005, 288: 149-173. full_text
Jackson AL, O'Neill H, Maree F, Blignaut B, Carillo C, Rodriguez L, Haydon DT: Mosaic structure of foot-and-mouth disease virus genomes. J Gen Virol 2007, 88: 487-492. 10.1099/vir.0.82555-0
Vosloo W, Bastos ADS, Sangare O, Hargreaves SK, Thomson GR: Review of the status and control of foot and mouth disease in sub-saharan Africa. Rev Sci Tech Off Int Epiz 2002, 21: 437-449.
Bastos AD, Anderson EC, Bengis RG, Keet DF, Winterbach HK, GR T: Molecular epidemiology of SAT3-type foot-and-mouth disease. Virus Genes 2003, 27: 283-290. 10.1023/A:1026352000959
Ayelet G, Mahapatra M, Gelaye E, Egziabher BG, Rufeal T, Sahle M, Ferris NP, Wadsworth J, Hutchings GH, Knowles NJ: Genetic characterization of foot-and-mouth disease viruses, Ethiopia, 1981-2007. Emerging Infectious Diseases 2009, 15: 1409-1417. 10.3201/eid1509.090091
Balinda SN, Belsham GJ, Masembe C, Sangula AK, Siegismund HR: Molecular characterization of SAT 2 foot-and-mouth diseasevirus from post-outbreak slaughtered animals: implications for disease control in Uganda. Epidemiol Infect 2009, 1-7.
King AM, McCahon D, Saunders K, Newman JW, Slade WR: Multiple sites of recombination within the RNA genome of foot-andmouth disease virus. Virus Res 1985, 3: 373-384. 10.1016/0168-1702(85)90437-X
McCahon D, King AM, Roe DS, Slade WR, Newman JW, Cleary AM: Isolation and biochemical characterization of intertypic recombinants of foot-and-mouth disease virus. Virus Res 1985, 3: 87-100. 10.1016/0168-1702(85)90044-9
Wilson V, Taylor P, Desselberger U: Crossover regions in foot-and-mouth disease virus (FMDV) recombinants correspond to regions of high local secondary structure. Arch of Virol 1988, 102: 131-139. 10.1007/BF01315570
Dawe P, Flanagan FO, Madekurozwa RL, Sorenson KJ, Anderson EC, Foggin C, Ferris NP, Knowles NJ: Natural transmission of foot-and-mouth disease from African buffalo(Syncerus caffer) to cattle in a wildlife area of Zimbabwe. Vet Rec 1994, 134: 230-232. 10.1136/vr.134.10.230
Thomson GR: Foot-and-mouth disease. In Infectious Diseases of Livestock with Special Reference to Southern Africa. Cape town: Oxford University Press; 1994.
Bastos ADS, Boshoff CI, Keet DF, Bengis RG, Thomson GR: Natural transmission of foot-and-mouth disease virus between African buffalo ( Syncerus caffer ) and impala ( Aerpyceros melampus ) in Kruger National Park, South Africa. Epidemiol Infect 2000, 124: 591-598. 10.1017/S0950268899004008
Edgar RC: MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 2004, 32: 1792-1797. 10.1093/nar/gkh340
Geneious v. 4.7[http://www.geneious.com]
Swofford DL: PAUP* Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0. Sunderland: Sinauer Associates; 2001.
Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL: Bayesian phylogenetic analysis of combined data. Syst Biol 2004, 53: 47-67. 10.1080/10635150490264699
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17: 754-755. 10.1093/bioinformatics/17.8.754
SimPlot for Windows 95, version 2.5[http://sray.med.som.jhmi.edu/SCRoftware/simplot/]
Klein J, Hussain M, Normann P, Afzal M, Alexandersen S: Genetic characterisation of the recent foot-and-mouth disease virus subtype A/IRN/2005. Virology Journal 2007, 4: 122. 10.1186/1743-422X-4-122
Mason PW, Pacheco JM, Zhao QZ, Knowles NJ: Comparisons of the complete genomes of Asian, African and European isolates of a recentfoot-and-mouth disease virus type O pandemic strain (PanAsia). J Gen Virol 2003, 84: 1583-1593. 10.1099/vir.0.18669-0
Dahourou G, Guillot S, Le Gall O, Crainic R: Genetic recombination in wild-type poliovirus. J Gen Virol 2002, 83: 3103-3110.
Oberste MS, Maher K, A PM: Evidence for frequent recombination within species Human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 2004, 78: 855-867. 10.1128/JVI.78.2.855-867.2004
Heath L, van der Walt E, Varsani A, Martin DP: Recombination patterns in Aphthoviruses mirror those found in other picornaviruses. J Virol 2006, 80: 11827-11832. 10.1128/JVI.01100-06