
Transactions on Embedded Computing Systems
SCIE-ISI SCOPUS (2002-2023)
1558-3465
1539-9087
Mỹ
Cơ quản chủ quản: ASSOC COMPUTING MACHINERY , Association for Computing Machinery (ACM)
Các bài báo tiêu biểu
Portable embedded computing systems require energy autonomy. This is achieved by batteries serving as a dedicated energy source. The requirement of portability places severe restrictions on size and weight, which in turn limits the amount of energy that is continuously available to maintain system operability. For these reasons, efficient energy utilization has become one of the key challenges to the designer of battery-powered embedded computing systems.In this paper, we first present a novel analytical battery model, which can be used for the battery lifetime estimation. The high quality of the proposed model is demonstrated with measurements and simulations. Using this battery model, we introduce a new "battery-aware" cost function, which will be used for optimizing the lifetime of the battery. This cost function generalizes the traditional minimization metric, namely the energy consumption of the system. We formulate the problem of battery-aware task scheduling on a single processor with multiple voltages. Then, we prove several important mathematical properties of the cost function. Based on these properties, we propose several algorithms for task ordering and voltage assignment, including optimal idle period insertion to exercise charge recovery.This paper presents the first effort toward a formal treatment of battery-aware task scheduling and voltage scaling, based on an accurate analytical model of the battery behavior.
Building distributed deal-time embedded systems requires a stringent methodology, from early requirement capture to full implementation. However, there is a strong link between the requirements and the final implementation (e.g., scheduling and resource dimensioning). Therefore, a rapid prototyping process based on automation of tedious and error-prone tasks (analysis and code generation) is required to speed up the development cycle. In this article, we show how the AADL (
Caches have become increasingly important with the widening gap between main memory and processor speeds. Small and fast cache memories are designed to bridge this discrepancy. However, they are only effective when programs exhibit sufficient data locality. In addition, caches are a source of unpredictability, resulting in programs sometimes behaving in a different way than expected. Detailed information about the number of cache misses and their causes allows us to predict cache behavior and to detect bottlenecks. Small modifications in the source code may change memory patterns, thereby altering the cache behavior. Code transformations, which take the cache behavior into account, might result in a high cache performance improvement. However, cache memory behavior is very hard to predict, thus making the task of optimizing and timing cache behavior very difficult. This article proposes and evaluates a new compiler framework that times cache behavior for multitasking systems. Our method explores the use of
In this study, we present a video search and indexing system based on the state support vector (SVM) network, video graph, and reinforcement agent for recognizing and organizing video events. In order to enhance the recognition performance of the state SVM network, two innovative techniques are presented: state transition correction and transition quality estimation. The classification results are also merged into the video indexing graph, which facilitates the search speed. A reinforcement algorithm with an efficient scheduling scheme significantly reduces both the power consumption and time. The experimental results show the proposed state SVM network was able to achieve a precision rate as high as 83.83% and the query results of the indexing graph reached 80% accuracy. The experiments also demonstrate the performance and feasibility of our system.