Theoretical and Applied Genetics
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Luxurierende Kreuzungen beiPinus silvestris und die Grundlagen für ihre Durchführung
Theoretical and Applied Genetics - Tập 13 - Trang 207-208 - 1941
Apomixis und umweltbedingte Variation beiPoa pratensis L
Theoretical and Applied Genetics - Tập 25 - Trang 80-86 - 1955
Organ/tissue-specific changes in the mitochondrial genome organization of in-vitro cultures derived from different explants of a single wheat variety
Theoretical and Applied Genetics - Tập 85 - Trang 1-8 - 1992
We have previously shown that the mitochondrial genome of long-term tissue cultures prepared from immature embryos of several varieties of cultivated wheat underwent variety-specific rearrangements resulting from either changes in the relative amounts of subgenomic components or from the appearance of novel genomic configurations. In the present work, both categories of rearrangements were studied in long-term tissue cultures initiated from other explants (shoot meristem, young leaf base, young root tip, immature inflorescence) of the same wheat variety (Chinese Spring) and were compared to those previously obtained with immature embryo cultures. Two main patterns of reorganization were found in a region of the mitochondrial genome known to be hypervariable in structure. In addition, some of the novel subgenomic configurations were obviously organ/tissue-specific whereas others were present in more than one type of organ. In several instances, the age of culture was found to determine the degree of mitochondrial DNA rearrangement. The data presented in this study strengthen the hypothesis of an association between a particular organization of the mitochondrial genome in tissue culture and its regeneration capacity.
An approximation to the likelihood for a pedigree with loops
Theoretical and Applied Genetics - Tập 93 - Trang 1299-1309 - 1996
This paper presents a new approximation to the likelihood for a pedigree with loops, based on cutting all loops and extending the pedigree at the cuts. An opimum loop-cutting strategy and an iterative extension technique are presented. The likelihood for a pedigree with loops is then approximated by the conditional likelihood for the entire cut-extended pedigree given the extended part. The approximate likelihoods are compared with the exact likelihoods obtained using the program MENDEL for several small pedigrees with loops. The approximation is efficient for large pedigrees with complex loops in terms of computing speed and memory requirements.
Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm
Theoretical and Applied Genetics - Tập 125 - Trang 1339-1352 - 2012
Soybean rust (SBR), caused by Phakopsora pachyrhizi Sydow, is one of the most economically important and destructive diseases of soybean [Glycine max (L.) Merr.] and the discovery of novel SBR resistance genes is needed because of virulence diversity in the pathogen. The objectives of this research were to map SBR resistance in plant introduction (PI) 561356 and to identify single nucleotide polymorphism (SNP) haplotypes within the region on soybean chromosome 18 where the SBR resistance gene Rpp1 maps. One-hundred F2:3 lines derived from a cross between PI 561356 and the susceptible experimental line LD02-4485 were genotyped with genetic markers and phenotyped for resistance to P. pachyrhizi isolate ZM01-1. The segregation ratio of reddish brown versus tan lesion type in the population supported that resistance was controlled by a single dominant gene. The gene was mapped to a 1-cM region on soybean chromosome 18 corresponding to the same interval as Rpp1. A haplotype analysis of diverse germplasm across a 213-kb interval that included Rpp1 revealed 21 distinct haplotypes of which 4 were present among 5 SBR resistance sources that have a resistance gene in the Rpp1 region. Four major North American soybean ancestors belong to the same SNP haplotype as PI 561356 and seven belong to the same haplotype as PI 594538A, the Rpp1-b source. There were no North American soybean ancestors belonging to the SNP haplotypes found in PI 200492, the source of Rpp1, or PI 587886 and PI 587880A, additional sources with SBR resistance mapping to the Rpp1 region.
Biochemical correlates of selection for weight-for-age in chickens: twenty-fold higher muscle ornithine decarboxylase levels in modern broilers
Theoretical and Applied Genetics - Tập 75 Số 3 - Trang 432-437 - 1988
Is there an optimum level of diversity in utilization of genetic resources?
Theoretical and Applied Genetics - Tập 130 - Trang 2283-2295 - 2017
Capitalizing upon the genomic characteristics of long-term random mating populations, sampling from pre-selected landraces is a promising approach for broadening the genetic base of elite germplasm for quantitative traits.
Genome-enabled strategies for harnessing untapped allelic variation of landraces are currently evolving. The success of such approaches depends on the choice of source material. Thus, the analysis of different strategies for sampling allelic variation from landraces and their impact on population diversity and linkage disequilibrium (LD) is required to ensure the efficient utilization of diversity. We investigated the impact of different sampling strategies on diversity parameters and LD based on high-density genotypic data of 35 European maize landraces each represented by more than 20 individuals. On average, five landraces already captured ~95% of the molecular diversity of the entire dataset. Within landraces, absence of pronounced population structure, consistency of linkage phases and moderate to low LD levels were found. When combining data of up to 10 landraces, LD decay distances decreased to a few kilobases. Genotyping 24 individuals per landrace with 5k SNPs was sufficient for obtaining representative estimates of diversity and LD levels to allow an informed pre-selection of landraces. Integrating results from European with Central and South American landraces revealed that European landraces represent a unique and diverse spectrum of allelic variation. Sampling strategies for harnessing allelic variation from landraces depend on the study objectives. If the focus lies on the improvement of elite germplasm for quantitative traits, we recommend sampling from pre-selected landraces, as it yields a wide range of diversity, allows optimal marker imputation, control for population structure and avoids the confounding effects of strong adaptive alleles.
Tổng số: 9,970
- 1
- 2
- 3
- 4
- 5
- 6
- 10