thumbnail

Springer Science and Business Media LLC

  1471-2229

 

 

Cơ quản chủ quản:  BMC , BioMed Central Ltd.

Lĩnh vực:
Plant Science

Phân tích ảnh hưởng

Thông tin về tạp chí

 

Các bài báo tiêu biểu

Genetic dissection of maize (Zea maysL.) trace element traits using genome-wide association studies
Tập 23 - Trang 1-14 - 2023
Hang Zhu, Ruiqiang Lai, Weiwei Chen, Chuanli Lu, Zaid Chachar, Siqi Lu, Huanzhang Lin, Lina Fan, Yuanqiang Hu, Yuxing An, Xuhui Li, Xiangbo Zhang, Yongwen Qi
Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport and accumulation. These results are expected to facilitate the screening and development of high-quality maize varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.
Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves
Tập 4 - Trang 1-8 - 2004
Michel Flor-Henry, Tulene C McCabe, Guy L de Bruxelles, Michael R Roberts
All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. We developed a novel configuration of a cooled charge-coupled device (CCD) for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves.
Distinctive plastome evolution in carnivorous angiosperms
Chao‐Nan Fu, Susann Wicke, Andan Zhu, Li D, Lian‐Ming Gao
Abstract Background Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. Results We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. Conclusion Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida
Tập 16 - Trang 1-20 - 2016
Siegfried Zerche, Klaus-Thomas Haensch, Uwe Druege, Mohammad-Reza Hajirezaei
Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated Nt contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced Nt contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial Nt and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high Nt contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two Nt levels. After 168 h, an enhanced Nt accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low Nt. However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low Nt to such an extent so that the benefit of the enhanced Nt was almost compensated. Combined dark exposure and low Nt of cuttings strongly reduced shoot growth during AR formation. The results indicate that both enhanced Nt content and dark exposure of cuttings reinforced N signals and mobile N resources in the stem base facilitated by senescence-related proteolysis in leaves. Based on our results, a model of N mobilisation concomitant with carbohydrate depletion and its significance for AR formation is postulated.
Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii, the bryophyte Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana
Tập 10 - Trang 1-30 - 2010
Nicola T Pitsch, Benjamin Witsch, Margarete Baier
Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS), which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin. Here, the genomes of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana were screened for ORFs encoding chloroplast peroxidases. The identified genes were compared for their amino acid sequence similarities and gene structures. Stromal and thylakoid-bound ascorbate peroxidases (APx) share common splice sites demonstrating that they evolved from a common ancestral gene. In contrast to most cormophytes, our results predict that chloroplast APx activity is restricted to the stroma in Chlamydomonas and to thylakoids in Physcomitrella. The moss gene is of retrotransposonal origin. The exon-intron-structures of 2CP genes differ between chlorophytes and streptophytes indicating an independent evolution. According to amino acid sequence characteristics only the A-isoform of Chlamydomonas 2CP may be functionally equivalent to streptophyte 2CP, while the weakly expressed B- and C-isoforms show chlorophyte specific surfaces and amino acid sequence characteristics. The amino acid sequences of chloroplast PrxII are widely conserved between the investigated species. In the analyzed streptophytes, the genes are unspliced, but accumulated four introns in Chlamydomonas. A conserved splice site indicates also a common origin of chlorobiont PrxQ. The similarity of splice sites also demonstrates that streptophyte glutathione peroxidases (GPx) are of common origin. Besides a less related cysteine-type GPx, Chlamydomonas encodes two selenocysteine-type GPx. The latter were lost prior or during streptophyte evolution. Throughout plant evolution, there was a strong selective pressure on maintaining the activity of all three investigated types of peroxidases in chloroplasts. APx evolved from a gene, which dates back to times before differentiation of chlorobionts into chlorophytes and streptophytes, while Prx and presumably also GPx gene patterns may have evolved independently in the streptophyte and chlorophyte branches.
Identification of novel and candidate miRNAs in rice by high throughput sequencing
- 2008
Ramanjulu Sunkar, Xuefeng Zhou, Yun Zheng, Weixiong Zhang, Jian‐Kang Zhu
GWAS of agronomic traits in soybean collection included in breeding pool in Kazakhstan
Tập 17 - Trang 1-8 - 2017
Alibek Zatybekov, Saule Abugalieva, Svetlana Didorenko, Yelena Gerasimova, Ivan Sidorik, Shynar Anuarbek, Yerlan Turuspekov
In recent years soybean is becoming one of the most important oilseed crops in Kazakhstan. Only within the last ten years (2006–2016), the area under soybean is expanded from 45 thousand hectares (ha) in 2006 to 120 thousand ha in 2016. The general trend of soybean expansion is from south-eastern to eastern and northern regions of the country, where average temperatures are lower and growing seasons are shorter. These new soybean growing territories were poorly examined in terms of general effects on productivity level among the diverse sample of soybean accessions. In this study, phenotypic data were collected in three separate regions of Kazakhstan and entire soybean sample was genotyped for identification of marker-trait associations (MTA). In this study, the collection of 113 accessions representing five different regions of the World was planted in 2015–2016 in northern, eastern, and south-eastern regions of Kazakhstan. It was observed that North American accessions showed the highest yield in four out of six trials especially in Northern Kazakhstan in both years. The entire sample was genotyped with 6 K SNP Illumina array. 4442 SNPs found to be polymorphic and were used for whole genome genotyping purposes. Obtained SNP markers data and field data were used for GWAS (genome-wide association study). 30 SNPs appear to be very significant in 42 MTAs in six studied environments. The study confirms the efficiency of GWAS for the identification of molecular markers which tag important agronomic traits. Overall thirty SNP markers associated with time to flowering and maturation, plant height, number of fertile nodes, seeds per plant and yield were identified. Physical locations of 32 identified out of 42 total MTAs coincide well with positions of known analogous QTLs. This result indicates importance of revealed MTAs for soybean growing regions in Kazakhstan. Obtained results would serve as required prerequisite for forming and realization of specific breeding programs towards effective adaptation and increased productivity of soybean in three different regions of Kazakhstan.
Atypical response regulators expressed in the maize endosperm transfer cells link canonical two component systems and seed biology
Tập 10 Số 1 - 2010
Luís M. Muñiz, Joaquı́n Royo, Elisa Gómez, Gaelle Baudot, Wyatt Paul, Gregorio Hueros
Abstract Background Two component systems (TCS) are phosphotransfer-based signal transduction pathways first discovered in bacteria, where they perform most of the sensing tasks. They present a highly modular structure, comprising a receptor with histidine kinase activity and a response regulator which regulates gene expression or interacts with other cell components. A more complex framework is usually found in plants and fungi, in which a third component transfers the phosphate group from the receptor to the response regulator. They play a central role in cytokinin mediated functions in plants, affecting processes such as meristem growth, phyllotaxy, seed development, leaf senescence or tissue differentiation. We have previously reported the expression and cellular localization of a type A response regulator, ZmTCRR-1, in the transfer cells of the maize seed, a tissue critical for seed filling and development, and described its regulation by a tissue specific transcription factor. In this work we investigate the expression and localization of other components of the TCS signalling routes in the maize seed and initiate the characterization of their interactions. Results The discovery of a new type A response regulator, ZmTCRR-2, specifically expressed in the transfer cells and controlled by a tissue specific transcription factor suggests a previously unknown role for TCS in the biology of transfer cells. We have characterized other canonical TCS molecules, including 6 histidine kinases and 3 phosphotransfer proteins, potentially involved in the atypical transduction pathway defined by ZmTCRR-1 and 2. We have identified potential upstream interactors for both proteins and shown that they both move into the developing endosperm. Furthermore, ZmTCRR-1 expression in an heterologous system (Arabidopsis thaliana) is directed to xylem parenchyma cells, probably involved in transport processes, one of the major roles attributed to the transfer cell layer. Conclusions Our data prove the expression of the effector elements of a TCS route operating in the transfer cells under developmental control. Its possible role in integrating external signals with seed developmental processes is discussed.
(Not) Keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism
Tập 10 - Trang 1-12 - 2010
Raul Herrera, Catherine Krier, Celine Lalanne, ElHadji Maodo Ba, Alexia Stokes, Franck Salin, Thierry Fourcaud, Stéphane Claverol, Christophe Plomion
Plants are subjected to continuous stimuli from the environment and have evolved an ability to respond through various growth and development processes. Phototropism and gravitropism responses enable the plant to reorient with regard to light and gravity. We quantified the speed of maritime pine seedlings to reorient with regard to light and gravity over 22 days. Seedlings were inclined at 15, 30 and 45 degrees with vertical plants as controls. A lateral light source illuminated the plants and stem movement over time was recorded. Depending on the initial angle of stem lean, the apical response to the lateral light source differed. In control and 15° inclined plants, the apex turned directly towards the light source after only 2 h. In plants inclined at 30° and 45°, the apex first reoriented in the vertical plane after 2 h, then turned towards the light source after 24 h. Two-dimensional gel electrophoresis coupled with mass spectrometry was then used to describe the molecular response of stem bending involved in photo- and gravi-tropism after 22 hr and 8 days of treatment. A total of 486 spots were quantitatively analyzed using image analysis software. Significant changes were determined in the protein accumulation of 68 protein spots. Early response gravitropic associated proteins were identified, which are known to function in energy related and primary metabolism. A group of thirty eight proteins were found to be involved in primary metabolism and energy related metabolic pathways. Degradation of Rubisco was implicated in some protein shifts. Our study demonstrates a rapid gravitropic response in apices of maritime pine seedlings inclined >30°. Little or no response was observed at the stem bases of the same plants. The primary gravitropic response is concomitant with a modification of the proteome, consisting of an over accumulation of energy and metabolism associated proteins, which may allow the stem to reorient rapidly after bending.
Mechanisms of salinity tolerance and their possible application in the breeding of vegetables
Mostafakamal Shams, Ali Khadivi
AbstractBackgroundIn dry and semi-arid areas, salinity is the most serious hazard to agriculture, which can affect plant growth and development adversely. Over-accumulation of Na+in plant organs can cause an osmotic effect and an imbalance in nutrient uptake. However, its harmful impact can vary depending on genotype, period of exposure to stress, plant development stage, and concentration and content of salt. To overcome the unfavorable effect of salinity, plants have developed two kinds of tolerance strategies based on either minimizing the entrance of salts by the roots or administering their concentration and diffusion.ResultsHaving sufficient knowledge of Na+accumulation mechanisms and an understanding of the function of genes involved in transport activity will present a new option to enhance the salinity tolerance of vegetables related to food security in arid regions. Considerable improvements in tolerance mechanisms can be employed for breeding vegetables with boosted yield performance under salt stress. A conventional breeding method demands exhaustive research work in crops, while new techniques of molecular breeding, such as cutting-edge molecular tools and CRISPR technology are now available in economically important vegetables and give a fair chance for the development of genetically modified organisms.ConclusionsTherefore, this review highlights the molecular mechanisms of salinity tolerance, various molecular methods of breeding, and many sources of genetic variation for inducing tolerance to salinity stress.