Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Integrated management of cardiac failure: the cardiac failure clinic
Springer Science and Business Media LLC - Tập 5 - Trang 20-25 - 2011
Daniel Loisance
The prevalence of the risk factors and the risk of cardiac failure are both increasing in China. This might be the consequence of the changes of the life conditions (emigration to the urban areas, changes in the diet and life style, lack of physical exercise, etc.). The wide range of clinical presentations of cardiac failure (acute or chronic) and of therapeutic approaches (medical or surgical) makes necessary the integration within the same structure of the various experts involved in the diagnosis and the treatment of cardiac diseases. Technologic and human resources required to offer all the options represent a multifaceted commitment which should be focused optimally in dedicated centers. In these centers, collaboration should replace competition between the medical and the surgical cardiac specialists. Development of team work should permit to optimize the cost efficacy of the treatments. Most of all, such a structure will facilitate the translation of innovative therapies between the research centers and clinical facilities.
Cyclospora cayetanensis infections among diarrheal outpatients in Shanghai: a retrospective case study
Springer Science and Business Media LLC - Tập 12 - Trang 98-103 - 2018
Yanyan Jiang, Zhongying Yuan, Guoqing Zang, Dan Li, Ying Wang, Yi Zhang, Hua Liu, Jianping Cao, Yujuan Shen
Cyclospora cayetanensis is a foodborne and waterborne pathogen that causes endemic and epidemic human diarrhea worldwide. A few epidemiological studies regarding C. cayetanensis infections in China have been conducted. During 2013, a total of 291 stool specimens were collected from patients with diarrhea at a hospital in urban Shanghai. C. cayetanensis was not detected in any of the stool specimens by traditional microscopy, whereas five stool specimens (1.72%, 5/291) were positive by PCR. These positive cases confirmed by molecular technology were all in the adult group (mean age 27.8 years; 2.94%, 5/170) with watery diarrhea. Marked infection occurred in the rainy season of May and July. Sequence and phylogenetic analyses of the partial 18S rRNA genes of C. cayetanensis isolated showed intra-species diversity of this parasite. This study showed, for the first time, that C. cayetanensis is a pathogen in outpatients with diarrhea in Shanghai, albeit at a low level. However, the transmission dynamics of this parasite in these patients remain uncertain.
Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection
Springer Science and Business Media LLC - Tập 14 - Trang 185-192 - 2020
Xin Zou, Ke Chen, Jiawei Zou, Peiyi Han, Jie Hao, Zeguang Han
It has been known that, the novel coronavirus, 2019-nCoV, which is considered similar to SARS-CoV, invades human cells via the receptor angiotensin converting enzyme II (ACE2). Moreover, lung cells that have ACE2 expression may be the main target cells during 2019-nCoV infection. However, some patients also exhibit non-respiratory symptoms, such as kidney failure, implying that 2019-nCoV could also invade other organs. To construct a risk map of different human organs, we analyzed the single-cell RNA sequencing (scRNA-seq) datasets derived from major human physiological systems, including the respiratory, cardiovascular, digestive, and urinary systems. Through scRNA-seq data analyses, we identified the organs at risk, such as lung, heart, esophagus, kidney, bladder, and ileum, and located specific cell types (i.e., type II alveolar cells (AT2), myocardial cells, proximal tubule cells of the kidney, ileum and esophagus epithelial cells, and bladder urothelial cells), which are vulnerable to 2019-nCoV infection. Based on the findings, we constructed a risk map indicating the vulnerability of different organs to 2019-nCoV infection. This study may provide potential clues for further investigation of the pathogenesis and route of 2019-nCoV infection.
Platelet membrane-based and tumor-associated platelettargeted drug delivery systems for cancer therapy
Springer Science and Business Media LLC - Tập 12 - Trang 667-677 - 2018
Yinlong Zhang, Guangna Liu, Jingyan Wei, Guangjun Nie
Platelets have long been known to play critical roles in hemostasis by clumping and clotting blood vessel injuries. Recent experimental evidence strongly indicates that platelets can also interact with tumor cells by direct binding or secreting cytokines. For example, platelets have been shown to protect circulating cancer cells in blood circulation and to promote tumor metastasis. In-depth understanding of the role of platelets in cancer progression and metastasis provides promising approaches for platelet biomimetic drug delivery systems and functional platelet-targeting strategies for effective cancer treatment. This review highlights recent progresses in platelet membrane-based drug delivery and unique strategies that target tumor-associated platelets for cancer therapy. The paper also discusses future development opportunities and challenges encountered for clinical translation.
Tissue engineering of cartilage, tendon and bone
Springer Science and Business Media LLC - Tập 5 - Trang 61-69 - 2011
Hengyun Sun, Wei Liu, Guangdong Zhou, Wenjie Zhang, Lei Cui, Yilin Cao
Tissue engineering aims to produce a functional tissue replacement to repair defects. Tissue reconstruction is an essential step toward the clinical application of engineered tissues. Significant progress has recently been achieved in this field. In our laboratory, we focus on construction of cartilage, tendon and bone. The purpose of this review was to summarize the advances in the engineering of these three tissues, particularly focusing on tissue regeneration and defect repair in our laboratory. In cartilage engineering, articular cartilage was reconstructed and defects were repaired in animal models. More sophisticated tissues, such as cartilage in the ear and trachea, were reconstructed both in vitro and in vivo with specific shapes and sizes. Engineered tendon was generated in vitro and in vivo in many animal models with tenocytes or dermal fibroblasts in combination with appropriate mechanical loading. Cranial and limb bone defects were also successfully regenerated and repaired in large animals. Based on sophisticated animal studies, several clinical trials of engineered bone have been launched with promising preliminary results, displaying the high potential for clinical application.
Clinical data quality problems and countermeasure for real world study
Springer Science and Business Media LLC - - 2014
Runshun Zhang, Yinghui Wang, Baoyan Liu, Guanyu Song, Xuezhong Zhou, Shizhen Fan, Xishui Pan
Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies
Springer Science and Business Media LLC - Tập 14 - Trang 117-125 - 2020
Guangbiao Zhou, Saijuan Chen, Zhu Chen
Since the outbreak of the COVID-19 pandemic in early December 2019, 81 174 confirmed cases and 3242 deaths have been reported in China as of March 19, 2020. The Chinese people and government have contributed huge efforts to combat this disease, resulting in significant improvement of the situation, with 58 new cases (34 were imported cases) and 11 new deaths reported on March 19, 2020. However, as of March 19, 2020, the COVID-19 pandemic continues to develop in 167 countries/territories outside of China, and 128 665 confirmed cases and 5536 deaths have been reported, with 16 498 new cases and 817 new deaths occurring in last 24 hours. Therefore, the world should work together to fight against this pandemic. Here, we review the recent advances in COVID-19, including the insights in the virus, the responses of the host cells, the cytokine release syndrome, and the therapeutic approaches to inhibit the virus and alleviate the cytokine storm. By sharing knowledge and deepening our understanding of the virus and the disease pathogenesis, we believe that the community can efficiently develop effective vaccines and drugs, and the mankind will eventually win this battle against this pandemic.
Research progress in pathogenic genes of hereditary non-syndromic mid-frequency deafness
Springer Science and Business Media LLC - Tập 10 - Trang 137-142 - 2016
Wenjun Xia, Fei Liu, Duan Ma
Hearing impairment is considered as the most prevalent impairment worldwide. Almost 600 million people in the world suffer from mild or moderate hearing impairment, an estimated 10% of the human population. Genetic factors play an important role in the pathogenesis of this disorder. Hereditary hearing loss is divided into syndromic hearing loss (associated with other anomalies) and non-syndromic hearing loss (not associated with other anomalies). Approximately 80% of genetic deafness is non-syndromic. On the basis of the frequency of hearing loss, hereditary non-syndromic hearing loss can be divided into high-, mid-, low-, and total-frequency hearing loss. An audiometric finding of mid-frequency sensorineural hearing loss, or a “bowl-shaped” audiogram, is uncommon. Up to now, merely 7 loci have been linked to mid-frequency hearing loss. Only four genetic midfrequency deafness genes, namely, DFNA10 (EYA4), DFNA8/12 (TECTA), DFNA13 (COL11A2), DFNA44 (CCDC50), have been reported to date. This review summarizes the research progress of the four genes to draw attention to mid-frequency deafness genes.
Reproductive toxicity study with a novel deoxyguanosine analogue (Metacavir) in pregnant SD rats
Springer Science and Business Media LLC - Tập 9 - Trang 82-89 - 2014
Qihui Luo, Zhengli Chen, Anchun Cheng, Mingshu Wang, Jing Fang, Xi Peng, Li Tang
Our preliminary studies demonstrated that Metacavir has potential to become a new anti-HBV agent. The main targets of the toxic effects of Metacavir, in rhesus monkeys, were gastrointestinal tracts, liver, blood, and kidneys, which were not related to mitochondrial effects. In this study, the maternal toxicity, embryo-fetal developmental toxicity and teratogenicity were studied in pregnant Sprague-Dawley rats after intragastric administration of Metacavir (200, 100, 50, 0 mg/kg body weight) during the first 6–15 days of pregnancy. Slower weight gain was observed in 5 out of 21 rats subjected to a 200 mg/kg dose, as well as 2 out of 20 subjected to a 100 mg/kg dose. Compared with the solvent control group, the calibration weight gain in the 200 mg/kg and 100 mg/kg dosage groups respectively, during first 6–20 pregnant days were significantly different (P < 0.01, P < 0.05). Significant dose related adverse effects to other reproductive parameters were not seen in F0 and F1, but the number of stillbirths in high dose group showed notably difference compared with the control group (P < 0.05), while the litter incidence showed no difference. No Metacavir-associated pathological changes were observed. The present research indicated that at a dose of 200 mg/(kg·d) (i.e., 40 times the effective dose in rats), Metacavir shows some maternal toxicity to SD rats. The embryotoxicity in the 200 mg/kg group encompass decreased fetal body weight, and higher fetal mortality rates, compared with the control group. However, the litter incidence showed no statistical difference. All the treated rats displayed normal bone development, no teratogenicity and without adverse effects on fetal development, thus indicating that below a dose of 200 mg/(kg·d) there is no teratogenic side effects.
The regulatory sciences for stem cell-based medicinal products
Springer Science and Business Media LLC - Tập 8 - Trang 190-200 - 2014
Bao-Zhu Yuan, Junzhi Wang
Over the past few years, several new achievements have been made from stem cell studies, many of which have moved up from preclinical stages to early, or from early to middle or late, stages thanks to relatively safe profile and preliminary evidence of effectiveness. Moreover, some stem cell-based products have been approved for marketing by different national regulatory authorities. However, many critical issues associated mainly with incomplete understanding of stem cell biology and the relevant risk factors, and lack of effective regulations still exist and need to be urgently addressed, especially in countries where establishment of appropriate regulatory system just commenced. More relevantly, the stem cell regulatory sciences need to be established or improved to more effectively evaluate quality, safety and efficacy of stem cell products, and for building up the appropriate regulatory framework. In this review, we summarize some new achievements in stem cell studies, especially the preclinical and clinical studies, the existing regulations, and the associated challenges, and we then propose some considerations for improving stem cell regulatory sciences with a goal of promoting the steadfast growth of the well-regulated stem cell therapies abreast of evolvement of stem cell sciences and technologies.
Tổng số: 613   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10