Hermite and Gabor transforms for noise reduction and handwriting classification in ancient manuscriptsSpringer Science and Business Media LLC - Tập 9 - Trang 101-122 - 2007
Véronique Eglin, Stéphane Bres, Carlos Rivero
In this paper, we propose a biologically inspired, global and segmentation free
methodology for manuscript noise reduction and classification. Our method
consists of developing well-adapted tools for writing enhancement, background
noise, text and drawing separation and handwritten patterns characterization
with orientation features. We have used here analysis of handwritten images in
the spectral... hiện toàn bộ
Comic MTL: tối ưu hóa học tập đa nhiệm cho phân tích hình ảnh truyện tranh Dịch bởi AI Springer Science and Business Media LLC - Tập 22 - Trang 265-284 - 2019
Nhu-Van Nguyen, Christophe Rigaud, Jean-Christophe Burie
Phương pháp phân tích hình ảnh truyện tranh thường đề xuất nhiều thuật toán hoặc
mô hình cho nhiều nhiệm vụ khác nhau như phát hiện bảng truyện, nhân vật (cơ thể
và khuôn mặt), phân đoạn khung thoại, nhận diện văn bản, v.v. Trong nghiên cứu
này, chúng tôi nhằm mục đích giảm thời gian xử lý cho phân tích hình ảnh truyện
tranh bằng cách đề xuất một mô hình có khả năng học nhiều nhiệm vụ, được gọi là... hiện toàn bộ
#phân tích hình ảnh truyện tranh #học đa nhiệm #phát hiện nhân vật #phân đoạn khung thoại #mối quan hệ giữa nhân vật và khung thoại
Fully convolutional network with dilated convolutions for handwritten text line segmentationSpringer Science and Business Media LLC - Tập 21 - Trang 177-186 - 2018
Guillaume Renton, Yann Soullard, Clément Chatelain, Sébastien Adam, Christopher Kermorvant, Thierry Paquet
We present a learning-based method for handwritten text line segmentation in
document images. Our approach relies on a variant of deep fully convolutional
networks (FCNs) with dilated convolutions. Dilated convolutions allow to never
reduce the input resolution and produce a pixel-level labeling. The FCN is
trained to identify X-height labeling as text line representation, which has
many advantage... hiện toàn bộ
Linear-quadratic blind source separating structure for removing show-through in scanned documentsSpringer Science and Business Media LLC - Tập 14 - Trang 319-333 - 2010
Farnood Merrikh-Bayat, Massoud Babaie-Zadeh, Christian Jutten
Digital documents are usually degraded during the scanning process due to the
contents of the backside of the scanned manuscript. This is often caused by the
show-through effect, i.e. the backside image that interferes with the main front
side picture due to the intrinsic transparency of the paper. This phenomenon is
one of the degradations that one would like to remove especially in the field of
... hiện toàn bộ
Large-scale genealogical information extraction from handwritten Quebec parish recordsSpringer Science and Business Media LLC - Tập 26 - Trang 255-272 - 2023
Solène Tarride, Martin Maarand, Mélodie Boillet, James McGrath, Eugénie Capel, Hélène Vézina, Christopher Kermorvant
This paper presents a complete workflow designed for extracting information from
Quebec handwritten parish registers. The acts in these documents contain
individual and family information highly valuable for genetic, demographic and
social studies of the Quebec population. From an image of parish records, our
workflow is able to identify the acts and extract personal information. The
workflow is d... hiện toàn bộ
A general framework for the recognition of online handwritten graphicsSpringer Science and Business Media LLC - Tập 23 - Trang 143-160 - 2020
Frank Julca-Aguilar, Harold Mouchère, Christian Viard-Gaudin, Nina S. T. Hirata
We revisit graph grammar and graph parsing as tools for recognizing graphics. A
top-down approach for parsing families of handwritten graphics containing
different kinds of symbols and of structural relations is proposed. It has been
tested on two distinct domains, namely the recognition of handwritten
mathematical expressions and of handwritten flowcharts. In the proposed
approach, a graphic is c... hiện toàn bộ
On the improvement of handwritten text line recognition with octave convolutional recurrent neural networksSpringer Science and Business Media LLC - - 2024
Dayvid Castro, Cleber Zanchettin, Luís A. Nunes Amaral
Off-line handwritten text recognition (HTR) poses a significant challenge due to
the complexities of variable handwriting styles, background degradation, and
unconstrained word sequences. This work tackles the handwritten text line
recognition problem using octave convolutional recurrent neural networks
(OctCRNN). Our approach requires no word segmentation, preprocessing, or
explicit feature extra... hiện toàn bộ