Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
The identification of the nitrate assimilation related genes in the novel Bacillus megaterium NCT-2 accounts for its ability to use nitrate as its only source of nitrogen
Springer Science and Business Media LLC - Tập 14 - Trang 219-227 - 2013
Weiwei Shi, Wei Lu, Qunlu Liu, Yuee Zhi, Pei Zhou
Bacillus megaterium NCT-2 is a novel bacterium that can utilize nitrate as its only nitrogen source for growth. The nitrate assimilation related genes that are involved in this process would be expected to be crucial. However, little is known about the genomic background of this bacterium, let alone the sequences of the nitrate assimilation related genes. In order to further investigate the nitrate assimilation function of the NCT-2, genome sequencing was performed. After obtaining the fine map of the NCT-2 genome, which was submitted to the NCBI GenBank (AHTF00000000), the sequences of the nitrate assimilation related genes (the nitrate reductase electron transfer subunit nasB and the nitrate reductase catalytic subunit nasC, the nitrite reductase [NAD(P)H] large subunit nasD and the nitrite reductase [NAD(P)H] small subunit nasE, and the glutamine synthetase glnA) were identified. Multiple alignments were performed to find out the sequence identities of the nitrate assimilation related genes to that of their similar species. Through KEGG signaling mapping search, the nitrate assimilation related genes were revealed to be located in the nitrogen metabolism signaling pathway. The putative 3D protein structures of these genes were modeled by SWISS MODEL, and shown to be highly similar to the nitrate assimilation related genes in the PDB database. Finally, the sequence validity of the nitrate assimilation related genes was verified by PCR with specifically designed primers.
De novo genome assembly and comparative annotation reveals metabolic versatility in cellulolytic bacteria from cropland and forest soils
Springer Science and Business Media LLC - Tập 20 - Trang 89-101 - 2019
Suman Yadav, Bhaskar Reddy, Suresh Kumar Dubey
Cellulose, the most abundant polysaccharide in nature, is a rich source of renewable energy and sustains soil nutrients. Among the microorganisms known to degrade cellulose, bacteria are less studied compared to fungi. In the present work, we have investigated the culturable bacteria actively involved in cellulose degradation in forest and crop field soils. Based on clear zone formation and enzyme activity assay, we identified 7 bacterial strains positive for cellulose degradation. Of these, two most efficient strains (Bacillus cereus strains BHU1 and BHU2) were selected for whole genome sequencing, annotation, and information regarding GC content, number of genes, total subsystems, starch, and cellulose degradation pathways. Average nucleotide identity (ANI) showed more than 90% similarity between both the strains (BHU1 and BHU2) and with B. cereus ATCC 14579. Both the strains have genes and enzyme families like endoglucanase and β-glucosidase as evident from whole genome sequence. Cellulase containing gene families (GH5, GH8, GH1), and many other carbohydrate-degrading enzymes, were present in both the bacterial strains. Taken together, the results suggest that the strains were efficient in cellulose degradation, and can be used for energy generation and production of value-added product.
The structural organisation of the gene encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants
Springer Science and Business Media LLC - Tập 3 - Trang 76-85 - 2003
Zhongyi Li, Fei Sun, Shoumin Xu, Xiusheng Chu, Y. Mukai, M. Yamamoto, Shahjahan Ali, Lynette Rampling, Behjat Kosar-Hashemi, Sadequr Rahman, Matthew K. Morell
Wheat and barley contain at least four classes of starch synthases in the endosperm, granule bound starch synthase I (GBSSI) and starch synthases I, II and III (SSI, SSII, SSIII). In this work, SSII in barley is shown to be associated with the starch granule by using antibodies. A cDNA from barley encoding SSII and the genes for SSII from barley and Aegilops tauschii (A. tauschii, the D genome donor to wheat) are characterised. Fluorescent in situ hybridisation (FISH) and PCR were used to localise the wheat SSII gene to the short arm of chromosome 7, showing synteny with the location of the rice SSII gene to the short arm of chromosome 6. Comparison of the genes encoding SSII of A. tauschii, barley and Arabidopsis showed a conserved exon-intron structure although the size of the introns varied considerably. Extending such comparison between the genes encoding starch synthases (GBSSI, SSI, SSII and SSIII) from A. tauschii and Arabidopsis showed that the exon-intron structures are essentially conserved. Separate and distinct genes for the individual starch synthases therefore existed before the separation of monocotyledons and dicotyledons.
Comparative transcriptome analysis reveals candidate genes related to the sex differentiation of Schisandra chinensis
Springer Science and Business Media LLC - - 2023
Jilong Cheng, Xueping Wei, Yu Chen, Yanfeng Qi, Bengang Zhang, Haitao Liu
Correction to: The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato
Springer Science and Business Media LLC - Tập 18 - Trang 355-355 - 2018
Nan Li, Han Wu, Qiangqiang Ding, Huihui Li, Zhifei Li, Jing Ding, Yi Li
In the original version of this article the “Acknowledgements” and the “Competing interests” were inadvertently omitted. The information missing in the original article is now given below.
Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis
Springer Science and Business Media LLC - Tập 11 - Trang 491-496 - 2011
Nam Il Park, Hui Xu, Xiaohua Li, Sun-Ju Kim, Sang Un Park
A complementary DNA (cDNA) encoding Scutellaria baicalensis chalcone isomerase (SbCHI) was isolated using rapid amplification of cDNA ends polymerase chain reaction. After the treatment of wounding or methyl jasmonate, SbCHI transcripts were increased in S. baicalensis cell suspensions. SbCHI-overexpressed and SbCH-silenced transgenic hairy root lines were established by using an Agrobacterium rhizogenes-mediated system. SbCHI-overexpressed hairy root lines not only enhanced SbCHI gene expression but also produced more flavones (i.e., baicalin, baicalein, and wogonin) than the control hairy root line. In contrast, SbCHI-silenced hairy root lines reduced SbCHI transcripts and flavone production compared to those of the control hairy roots. In addition, the amount of wogonin in all hairy root cultures was increased compared to that of wild-type roots of S. baicalensis. Finally, this study showed the importance of CHI in flavone biosynthesis and the efficiency of metabolic engineering in S. baicalensis hairy roots.
Salinity-associated microRNAs and their potential roles in mediating salt tolerance in rice colonized by the endophytic root fungus Piriformospora indica
Springer Science and Business Media LLC - - 2019
Hadis Kord, Barat Ali Fakheri, Mehdi Ghabooli, Mahmood Solouki, Abbasali Emamjomeh, Behnam Khatabi, Mozhgan Sepehri, Ghasem Hosseini Salekdeh, Mohammad Reza Ghaffari
Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits
Springer Science and Business Media LLC - Tập 19 - Trang 715-727 - 2019
Hande Morgil, Mehmet Tardu, Gül Cevahir, İbrahim Halil Kavakli
Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. To gain insights into the genome-wide transcriptional regulation in lentil root and leaf under short- and long-term drought conditions, we performed RNA-seq on a drought-sensitive lentil cultivar (Lens culinaris Medik. cv. Sultan). After establishing drought conditions, lentil samples were subjected to de novo RNA-seq-based transcriptome analysis. The 207,076 gene transcripts were successfully constructed by de novo assembly from the sequences obtained from root, leaf, and stems. Differentially expressed gene (DEG) analysis on these transcripts indicated that period of drought stress had a greater impact on the transcriptional regulation in lentil root. The numbers of DEGs were 2915 under short-term drought stress while the numbers of DEGs were increased to 18,327 under long-term drought stress condition in the root. Further, Gene Ontology analysis revealed that the following biological processes were differentially regulated in response to long-term drought stress: protein phosphorylation, embryo development seed dormancy, DNA replication, and maintenance of root meristem identity. Additionally, DEGs, which play a role in circadian rhythm and photoreception, were downregulated suggesting that drought stress has a negative effect on the internal oscillators which may have detrimental consequences on plant growth and survival. Collectively, this study provides a detailed comparative transcriptome response of drought-sensitive lentil strain under short- and long-term drought conditions in root and leaf. Our finding suggests that not only the regulation of genes in leaves is important but also genes regulated in roots are important and need to be considered for improving drought tolerance in lentil.
Validation of molecular response of tuberization in response to elevated temperature by using a transient Virus Induced Gene Silencing (VIGS) in potato
Springer Science and Business Media LLC - - 2021
Maharishi Tomar, Sundaresha S., Baljeet Singh, Vinay Bhardwaj, Salej Sood, Brajesh Singh, Neha Salaria, Kajal Thakur, Ashwani Kumar, Neha Sharma, Umesh Goutam
Temperature plays an important role in potato tuberization. The ideal night temperature for tuber formation is ~17 °C while temperature beyond 22 °C drastically reduces the tuber yield. Moreover, high temperature has several undesirable effects on the plant and tubers. Investigation of the genes involved in tuberization under heat stress can be helpful in the generation of heat-tolerant potato varieties. Five genes, including StSSH2 (succinic semialdehyde reductase isoform 2), StWTF (WRKY transcription factor), StUGT (UDP-glucosyltransferase), StBHP (Bel1 homeotic protein), and StFLTP (FLOWERING LOCUS T protein), involved in tuberization and heat stress in potato were investigated. The results of our microarray analysis suggested that these genes regulate and function as transcriptional factors, hormonal signaling, cellular homeostasis, and mobile tuberization signals under elevated temperature in contrasting KS (Kufri Surya) and KCM (Kufri Chandramukhi) potato cultivars. However, no detailed report is available which establishes functions of these genes in tuberization under heat stress. Thus, the present study was designed to validate the functions of these genes in tuber signaling and heat tolerance using virus-induced gene silencing (VIGS). Results indicated that VIGS transformed plants had a consequential reduction in StSSH2, StWTF, StUGT, StBHP, and StFLTP transcripts compared to the control plants. Phenotypic observations suggest an increase in plant senescence, reductions to both number and size of tubers, and a decrease in plant dry matter compared to the control plants. We also establish the potency of VIGS as a high-throughput technique for functional validation of genes.
VEGFR affects miR-3200-3p-mediated regulatory T cell senescence in tumour-derived exosomes in non-small cell lung cancer
Springer Science and Business Media LLC - Tập 24 - Trang 1-11 - 2024
Kaiyuan Hui, Changhong Dong, Chenxi Hu, Jiawen Li, Dongyue Yan, Xiaodong Jiang
Numerous studies have demonstrated that regulatory T (Treg) cells play an important role in the tumour microenvironment (TME). The aim of this study was to investigate whether VEGFR2 affects the expression of miR-3200-3p in exosomes secreted by tumour cells, thereby influencing Treg senescence in the TME. The results showed that VEGFR2 expression level was the highest in Calu-1 cells, and after transfection with si-VEGFR2, the exosomes secreted from Calu-1 cells were extracted and characterised with no significant difference from the exosomes of the untransfected group, but the expression of miR-3200-3p in the exosomes of the transfected si-VEGFR2 group was elevated. The Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM) results suggested that exosomes highly expressing miR-3200-3p could inhibit Treg cell viability and promote apoptosis levels when treated with Treg cells. Detection of the senescence-associated proteins p16 INK4A and MMP3 by western blot (WB) revealed that exosomes highly expressing miR-3200-3p were able to elevate their protein expression levels. Tumour xenograft experiments demonstrated that exosomes with high miR-3200-3p expression promoted Treg cell senescence and inhibited subcutaneous tumour growth in nude mice. Dual-luciferase reporter assays and RNA pull-down assays showed that miR-3200-3p could be linked with DDB1. Overexpression of DDB1 reverses changes in DCAF1/GSTP1/ROS protein expression caused by exosomes with high miR-3200-3p expression. In conclusion, inhibition of VEGFR2 expression in tumour cells promotes the expression of miR-3200-3p in exosomes secreted by tumour cells. miR-3200-3p enters the TME through exosomes and acts on DDB1 in Treg cells to promote senescence of Treg cells to inhibit tumour progression.
Tổng số: 1,022   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10