Coordinated regulation of Myc trans-activation targets by Polycomb and the Trithorax group protein Ash1Springer Science and Business Media LLC - Tập 8 - Trang 1-16 - 2007
Julie M Goodliffe, Michael D Cole, Eric Wieschaus
The Myc oncoprotein is a transcriptional regulator whose function is essential for normal development. Myc is capable of binding to 10% of the mammalian genome, and it is unclear how a developing embryo controls the DNA binding of its abundant Myc proteins in order to avoid Myc's potential for inducing tumorigenesis. To identify chromatin binding proteins with a potential role in controlling Myc activity, we established a genetic assay for dMyc activity in Drosophila. We conducted a genome-wide screen using this assay, and identified the Trithorax Group protein Ash1 as a modifier of dMyc activity. Ash1 is a histone methyltransferase known for its role in opposing repression by Polycomb. Using RNAi in the embryo and Affymetrix microarrays, we show that ash1 RNAi causes the increased expression of many genes, suggesting that it is directly or indirectly required for repression in the embryo, in contrast to its known role in maintenance of activation. Many of these genes also respond similarly upon depletion of Pc and pho transcripts, as determined by concurrent microarray analysis of Pc and pho RNAi embryos, suggesting that the three are required for low levels of expression of a common set of targets. Further, many of these overlapping targets are also activated by Myc overexpression. We identify a second group of genes whose expression in the embryo requires Ash1, consistent with its previously established role in maintenance of activation. We find that this second group of Ash1 targets overlaps those activated by Myc and that ectopic Myc overcomes their requirement for Ash1. Genetic, genomic and chromatin immunoprecipitation data suggest a model in which Pc, Ash1 and Pho are required to maintain a low level of expression of embryonic targets of activation by Myc, and that this occurs, directly or indirectly, by a combination of disparate chromatin modifications.
Early growth response protein 1 regulates promoter activity of α-plasma membrane calcium ATPase 2, a major calcium pump in the brain and auditory systemSpringer Science and Business Media LLC - Tập 18 Số 1 - Trang 1-14 - 2017
Minich, Rebecca R., Li, Jin, Tempel, Bruce L.
Along with sodium/calcium (Ca2+) exchangers, plasma membrane Ca2+ ATPases (ATP2Bs) are main regulators of intracellular Ca2+ levels. There are four ATP2B paralogs encoded by four different genes. Atp2b2 encodes the protein pump with the fastest activation, ATP2B2. In mice, the Atp2b2 transcript has several alternate transcriptional start site variants: α, β, µ and δ. These variants are expressed in developmental and tissue specific manners. The α and β Atp2b2 transcripts are equally expressed in the brain. αAtp2b2 is the only transcript found in the outer hair cells of young mice (Silverstein RS, Tempel BL. in Neuroscience 141:245–257, 2006). Mutations in the coding region of the mouse Atp2b2 gene indicate a narrow window for tolerated dysfunction of the ATP2B2 protein, specifically in the auditory system. This highlights the necessity of tight regulation of this gene for normal cell physiology. Although ATP2Bs are important regulators of Ca2+ in many cell types, little is known about their transcriptional regulation. This study identifies the proximal promoter of the αAtp2b2 transcript. Further investigations indicate that ATOH1 and EGR1 modulate promoter activity. Additionally, we report that EGR1 increases endogenous expression of Atp2b2 transcript in two cell lines. Electrophoretic mobility shift assays (EMSA) indicate that EGR1 binds to a specific site in the CpG island of the αAtp2b2 promoter. This study furthers our understanding of Atp2b2 regulation by: (I) elucidating transcriptional regulatory mechanisms for Atp2b2, and (II) identifying transcription factors that modulate expression of Atp2b2 in the brain and peripheral auditory system and (III) allows for future studies modulating gene expression of Atp2b2.
Exploration of carbohydrate binding behavior and anti-proliferative activities of Arisaema tortuosum lectinSpringer Science and Business Media LLC - Tập 20 - Trang 1-15 - 2019
Kshema Thakur, Tarnjeet Kaur, Manpreet Kaur, Rachna Hora, Jatinder Singh
Lectins have come a long way from being identified as proteins that agglutinate cells to promising therapeutic agents in modern medicine. Through their specific binding property, they have proven to be anti-cancer, anti-insect, anti-viral agents without affecting the non-target cells. The Arisaema tortuosum lectin (ATL) is a known anti-insect and anti-cancer candidate, also has interesting physical properties. In the present work, its carbohydrate binding behavior is investigated in detail, along with its anti-proliferative property. The microcalorimetry of ATL with a complex glycoprotein asialofetuin demonstrated trivalency contributed by multiple binding sites and enthalpically driven spontaneous association. The complex sugar specificity of ATL towards multiple sugars was also demonstrated in glycan array analysis in which the trimannosyl pentasaccharide core N-glycan [Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ] was the highest binding motif. The high binding glycans for ATL were high mannans, complex N-glycans, core fucosylated N-glycans and glycans with terminal lactosamine units attached to pentasaccharide core. ATL induced cell death in IMR-32 cells was observed as time dependent loss in cell number, formation of apoptotic bodies and DNA damage. As a first report of molecular cloning of ATL, the in silico analysis of its cDNA revealed ATL to be a β-sheet rich heterotetramer. A homology model of ATL showed beta prism architecture in each monomer with 85% residues in favoured region of Ramachandran plot. Detailed exploration of carbohydrate binding behavior indicated ATL specificity towards complex glycans, while no binding to simple sugars, including mannose. Sequence analysis of ATL cDNA revealed that during the tandem evolutionary events, domain duplication and mutations lead to the loss of mannose specificity, acquiring of new sugar specificity towards complex sugars. It also resulted in the formation of a two-domain single chain polypeptide with both domains having different binding sites due to mutations within the consensus carbohydrate recognition sites [QXDXNXVXY]. This unique sugar specificity can account for its significant biological properties. Overall finding of present work signifies anti-cancer, anti-insect and anti-viral potential of ATL making it an interesting molecule for future research and/or theragnostic applications.
MAR-mediated integration of plasmid vectors for in vivo gene transfer and regulationSpringer Science and Business Media LLC - Tập 14 - Trang 1-12 - 2013
Stefania Puttini, Ruthger W van Zwieten, Damien Saugy, Małgorzata Lekka, Florence Hogger, Deborah Ley, Andrzej J Kulik, Nicolas Mermod
The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
A protein knockdown strategy to study the function of β-catenin in tumorigenesisSpringer Science and Business Media LLC - Tập 4 - Trang 1-11 - 2003
Feng Cong, Jianxuan Zhang, William Pao, Pengbo Zhou, Harold Varmus
The Wnt signaling pathway plays critical roles in cell proliferation and cell fate determination at many stages of development. A critical downstream target of Wnt signaling is the cytosolic β-catenin, which is stabilized upon Wnt activation and promotes transcription of a variety of target genes including c-myc and cyclin D. Aberrant Wnt signaling, which results from mutations of either β-catenin or adenomatous polyposis coli (APC), renders β-catenin resistant to degradation, and has been associated with multiple types of human cancers. A protein knockdown strategy was designed to reduce the cytosolic β-catenin levels through accelerating its turnover rate. By engineering a chimeric protein with the β-catenin binding domain of E-cadherin fused to βTrCP ubiquitin-protein ligase, the stable β-catenin mutant was recruited to the cellular SCF (S kp1, C ullin 1, and F-box-containing substrate receptor) ubiquitination machinery for ubiquitination and degradation. The DLD1 colon cancer cells express wild type β-catenin at abnormally high levels due to loss of APC. Remarkably, conditional expression of βTrCP-E-cadherin under the control of a tetracycline-repressive promoter in DLD1 cells selectively knocked down the cytosolic, but not membrane-associated subpopulation of β-catenin. As a result, DLD1 cells were impaired in their growth and clonogenic ability in vitro, and lost their tumorigenic potential in nude mice. We have designed a novel approach to induce degradation of stabilized/mutated β-catenin. Our results suggest that a high concentration of cytoplasmic β-catenin is critical for the growth of colorectal tumor cells. The protein knockdown strategy can be utilized not only as a novel method to dissect the role of oncoproteins in tumorigenesis, but also as a unique tool to delineate the function of a subpopulation of proteins localized to a specific subcellular compartment.
Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristicsSpringer Science and Business Media LLC - - 2007
Rachel Brough, Antigoni M Papanastasiou, Andrew CG Porter
The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-Sce I endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-Sce I transgenes. Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes.
Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway diseaseSpringer Science and Business Media LLC - Tập 12 Số 1 - 2011
Laura Beekman, T. Tohver, Rkia Dardari, Renaud Léguillette
Abstract
Background
The stability of reference genes has a tremendous effect on the results of relative quantification of genes expression by quantitative polymerase chain reaction. Equine Inflammatory Airway Disease (IAD) is a common condition often treated with corticosteroids. The diagnosis of IAD is based on clinical signs and bronchoalveolar lavage (BAL) fluid cytology. The aim of this study was to identify reference genes with the most stable mRNA expression in the BAL cells of horses with IAD irrespective of corticosteroids treatment.
Results
The expression stability of seven candidate reference genes (B2M, HPRT, GAPDH, ACTB, UBB, RPL32, SDHA) was determined by qRT-PCR in BAL samples taken pre- and post- treatment with dexamethasone and fluticasone propionate for two weeks in 7 horses with IAD. Primers' efficiencies were calculated using LinRegPCR. NormFinder, GeNorm and qBasePlus softwares were used to rank the genes according to their stability. GeNorm was also used to determine both the ideal number and the best combination of reference genes. GAPDH was found to be the most stably expressed gene with the three softwares. GeNorm ranked B2M as the least stable gene. Based on the pair-wise variation cut-off value determined with GeNorm, the number of genes required for optimal normalization was four and included GAPDH, SDHA, HPRT and RPL32.
Conclusion
The geometric mean of GAPDH, HPRT, SDHA and RPL32 is recommended for accurate normalization of quantitative PCR data in BAL cells of horses with IAD treated with corticosteroids. If only one reference gene can be used, then GAPDH is recommended.
Pre-amplification in the context of high-throughput qPCR gene expression experimentSpringer Science and Business Media LLC - Tập 16 - Trang 1-10 - 2015
Vlasta Korenková, Justin Scott, Vendula Novosadová, Marie Jindřichová, Lucie Langerová, David Švec, Monika Šídová, Robert Sjöback
With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.
Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I intronsSpringer Science and Business Media LLC - - 2010
James R. Carter, James H Keith, Pradip V Barde, Tresa S. Fraser, Malcolm J. Fraser
Abstract
Background
Dengue viruses (DENV) are one of the most important viral diseases in the world with approximately 100 million infections and 200,000 deaths each year. The current lack of an approved tetravalent vaccine and ineffective insecticide control measures warrant a search for alternatives to effectively combat DENV. The trans-splicing variant of the Tetrahymena thermophila group I intron catalytic RNA, or ribozyme, is a powerful tool for post-transcriptional RNA modification. The nature of the ribozyme and the predictability with which it can be directed makes it a powerful tool for modifying RNA in nearly any cell type without the need for genome-altering gene therapy techniques or dependence on native cofactors.
Results
Several anti-DENV Group I trans-splicing introns (αDENV-GrpIs) were designed and tested for their ability to target DENV-2 NGC genomes in situ. We have successfully targeted two different uracil bases on the positive sense genomic strand within the highly conserved 5'-3' cyclization sequence (CS) region common to all serotypes of DENV with our αDENV-GrpIs. Our ribozymes have demonstrated ability to specifically trans-splice a new RNA sequence downstream of the targeted site in vitro and in transfected insect cells as analyzed by firefly luciferase and RT-PCR assays. The effectiveness of these αDENV-GrpIs to target infecting DENV genomes is also validated in transfected or transformed Aedes mosquito cell lines upon infection with unattenuated DENV-2 NGC.
Conclusions
Analysis shows that our αDENV-GrpIs have the ability to effectively trans-splice the DENV genome in situ. Notably, these results show that the αDENV-GrpI 9v1, designed to be active against all forms of Dengue virus, effectively targeted the DENV-2 NGC genome in a sequence specific manner. These novel αDENV-GrpI introns provide a striking alternative to other RNA based approaches for the transgenic suppression of DENV in transformed mosquito cells and tissues.
Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposaseSpringer Science and Business Media LLC - Tập 9 - Trang 1-20 - 2008
James H Keith, Cheryl A Schaeper, Tresa S Fraser, Malcolm J Fraser
The piggyBac mobile element is quickly gaining popularity as a tool for the transgenesis of many eukaryotic organisms. By studying the transposase which catalyzes the movement of piggyBac, we may be able to modify this vector system to make it a more effective transgenesis tool. In a previous publication, Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, and Collins FH have proposed the presence of the widespread 'DDE/DDD' motif for piggyBac at amino acid positions D268, D346, and D447. This study utilizes directed mutagenesis and plasmid-based mobility assays to assess the importance of these residues as the catalytic core of the piggyBac transposase. We have functionally analyzed individual point-mutations with respect to charge and physical size in all three proposed residues of the 'DDD' motif as well as another nearby, highly conserved aspartate at D450. All of our mutations had a significant effect on excision frequency in S2 cell cultures. We have also aligned the piggyBac transposase to other close family members, both functional and non-functional, in an attempt to identify the most highly conserved regions and position a number of interesting features. We found all the designated DDD aspartates reside in clusters of amino acids that conserved among piggyBac family transposase members. Our results indicate that all four aspartates are necessary, to one degree or another, for excision to occur in a cellular environment, but D450 seems to have a tolerance for a glutamate substitution. All mutants tested significantly decreased excision frequency in cell cultures when compared with the wild-type transposase.