Characterization, phylogeny, alternative splicing and expression of Sox30 gene

Springer Science and Business Media LLC - Tập 11 - Trang 1-11 - 2010
Fei Han1, Zhijian Wang1, Fengrui Wu1, Zhihao Liu1, Baofeng Huang1, Deshou Wang1
1Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China

Tóm tắt

Members of the Sox gene family isolated from both vertebrates and invertebrates have been proved to participate in a wide variety of developmental processes, including sex determination and differentiation. Among these members, Sox30 had been considered to exist only in mammals since its discovery, and its exact function remains unclear. Sox30 cDNA was cloned from the Nile tilapia by RT-PCR and RACE. Screening of available genome and EST databases and phylogenetic analysis showed that Sox30 also exists in non-mammalian vertebrates and invertebrates, which was further supported by synteny analyses. Tissue expression in human, mouse and tilapia suggested that Sox30 was probably a gonad-specific gene, which was also supported by the fact that Sox30 EST sequences were obtained from gonads of the animal species. In addition, four alternatively spliced isoforms were isolated from tilapia gonad. Their temporal and spatial expression patterns during normal and sex reversed gonadal development were investigated by RT-PCR and in situ hybridization. Our data suggest that expressions of Sox30 isoforms are related to stage and phenotypic-sex, observed in the germ cells of male gonad and in somatic cells of the female gonad. Sox30 is not a gene only existed in mammals, but exists widely throughout the animal kingdom as supported by our bioinformatic, phylogenetic and syntenic analyses. It is very likely that Sox30 is expressed exclusively in gonads. Expression analyses revealed that Sox30 may be involved in female and male gonadal development at different stages by alternative splicing.

Tài liệu tham khảo

Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN: A gene from the human sex determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990, 364: 240-244. 10.1038/346240a0. 10.1038/346240a0 Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell-Badge R: A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990, 346: 245-250. 10.1038/346245a0 Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R: Male development of chromosomally female mice transgenic for Sry. Nature. 1991, 351: 117-121. 10.1038/351117a0 Wilson MJ, Dearden PK: Evolution of the insect Sox genes. BMC Evol Biol. 2008, 8: 120- 10.1186/1471-2148-8-120 Pevny LH, Lovell-Badge R: Sox genes find their feet. Curr Opin Genet Dev. 1997, 7: 338-344. 10.1016/S0959-437X(97)80147-5 Schepers GE, Teasdale RD, Koopman P: Twenty pairs of Sox: extent, homology, and nomenclature of the mouse and human Sox transcription factor gene families. Dev Cell. 2002, 3: 167-170. 10.1016/S1534-5807(02)00223-X Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B: Control of cell fate and differentiation by Sry-related highmobility-group box (Sox) transcription factors. Int J Biochem Cell Biol. 2007, 39: 2195-2214. 10.1016/j.biocel.2007.05.019 Bowles J, Schepers G, Koopman P: Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000, 227: 239-255. 10.1006/dbio.2000.9883 Hacker A, Capel B, Goodfellow P, Lovell-Badge R: Expression of Sry, the mouse sex determining gene. Development. 1995, 121: 1603-1614. Collignon J, Sockanathan S, Hacker A, Cohen-Tannoudji M, Norris D, Rastan S, Stevanovic M, Goodfellow PN, Lovell-Badge R: A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development. 1996, 122: 509-520. Jay P, Goze C, Marsollier C, Taviaux S, Hardelin JP, Koopman P, Berta P: The human SOX11 gene: cloning, chromosomal assignment and tissue expression. Genomics. 1995, 29: 541-545. 10.1006/geno.1995.9970 Jay P, Sahly I, Goze C, Taviaux S, Poulat F, Couly G, Abitbol M, Berta P: SOX22 is a new member of the SOX gene family, mainly expressed in human nervous tissue. Hum Mol Genet. 1997, 6: 1069-1077. 10.1093/hmg/6.7.1069 Wright E, Hargrave MR, Christiansen J, Cooper L, Kun J, Evans T, Gangadharan U, Greenfield A, Koopman P: The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet. 1995, 9: 15-20. 10.1038/ng0195-15 Cohen-Barak O, Hagiwara N, Arlt MF, Horton JP, Brilliant MH: Cloning, characterization and chromosome mapping of the human SOX6 gene. Gene. 2001, 265: 157-164. 10.1016/S0378-1119(01)00346-8 Kanai Y, Kanai-Azuma M, Noce T, Saido TC, Hayashi Y, Yazaki K: Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. J Cell Biol. 1996, 133: 667-681. 10.1083/jcb.133.3.667 Osaki E, Inazawa J, Copeland NG, Gilbert DJ, Jenkins NA, Ohsugi M, Tezuka T, Yoshida M, Semba K: Identification of a novel Sry-related gene and its germ cell-specific expression. Nucleic Acids Res. 1999, 27: 2503-2510. 10.1093/nar/27.12.2503 Stevanovic M, Lovell-Badge R, Collignon J, Goodfellow PN: SOX3 is an X-linked gene related to SRY. Hum Mol Genet. 1993, 2: 2013-2018. 10.1093/hmg/2.12.2013 Ballow D, Meistrich ML, Matzuk M, Rajkovic A: Sohlh1 is essential for spermatogonial differentiation. Dev Biol. 2006, 294: 161-167. 10.1016/j.ydbio.2006.02.027 Koopman P, Schepers G, Brenner S, Venkatesh B: Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene. 2004, 17: 177-186. 10.1016/j.gene.2003.12.008. 10.1016/j.gene.2003.12.008 De Martino SP, Errington F, Ashworth A, Jowett T, Austin CA: Sox30: a novel zebrafish sox gene expressed in a restricted manner at the midbrain-hindbrain boundary during neurogenesis. Dev Genes Evol. 1999, 209: 357-362. 10.1007/s004270050264 Wang DS, Jiao B, Hu C, Huang X, Liu Z, Cheng CH: Discovery of a gonad-specific IGF subtype in teleost. Biochem Biophys Res Commun. 2008, 367: 336-341. 10.1016/j.bbrc.2007.12.136 Kobayashi T, Kajiura-Kobayashi H, Nagahama Y: Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res. 2003, 101: 289-294. 10.1159/000074351 Zhang WL, Zhou LY, Senthilkumaran B, Sudhakumari CC, Kobayashi T, Nagahama Y, Wang DS: Molecular cloning of two isoforms of 11β-hydroxylase and their expressionsin the Nile tilapia, Oreochromis niloticus. Gen Comp Endocrinol. 2010, 165: 34-41. 10.1016/j.ygcen.2009.05.018 Zhou L, Wang D, Kobayashi T, Yano A, Paul-Prasanth B, Suzuki A, Sakai F, Nagahama Y: A novel type of P450c17, lacking the lyase activity is responsible for C21-steroid biosynthesis in the fish ovary and head kidney. Endocrinology. 2007, 148: 4282-4291. 10.1210/en.2007-0487 Jiao BW, Huang XG, Chan CB, Zhang L, Wang DS, Cheng CHK: The co-existence of two growth hormone receptors in teleost fish and their differential signal transduction, tissue distribution and hormonal regulation of expression in seabream. J Mol Endocrinol. 2006, 36: 23-40. 10.1677/jme.1.01945 Wang D, Kobayashi T, Zhou L, Nagahama Y: Molecular cloning and gene expression of Foxl2 in the Nile tilapia, Oreochromis niloticus. Biochem Biophys Res Commun. 2004, 320: 83-89. 10.1016/j.bbrc.2004.05.133 Phochanukul N, Russell S: No backbone but lots of Sox: Invertebrate Sox genes. Int J Biochem Cell Biol. 2010, 42: 453-464. 10.1016/j.biocel.2009.06.013 Nagai K: Molecular evolution of Sry and Sox gene. Gene. 2001, 270: 161-169. 10.1016/S0378-1119(01)00479-6 Hett AK, Ludwig A: SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome. 2005, 48: 181-186. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 2003, 302: 2141-2144. 10.1126/science.1090100 Smith CW, Valcárcel J: Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci. 2000, 25: 381-388. 10.1016/S0968-0004(00)01604-2 Takase M, Noguchi S, Nakamura M: Two Sox9 messenger RNA isoforms: isolation of cDNAs and their expression during gonadal development in the frog, Rana rugosa. FEBS Lett. 2000, 466: 249-254. 10.1016/S0014-5793(00)01078-4 Sakai N, Terami H, Suzuki S, Haga M, Nomoto K, Tsuchida N, Morohashi K, Saito N, Asada M, Hashimoto M, Harada D, Asahara H, Ishikawa T, Shimada F, Sakurada K: Identification of NR5A1 (SF-1/AD4BP) gene expression modulators by large-scale gain and loss of function studies. J Endocrinol. 2008, 198: 489-497. 10.1677/JOE-08-0027 Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y: Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Molecular Endocrinology. 2007, 21: 712-725. 10.1210/me.2006-0248 Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y: Dmrt1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology. 2010, 151: 1331-1340. 10.1210/en.2009-0999