Solar Physics

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Book review
Solar Physics - Tập 102 - Trang 203-203 - 1985
S. T. Wu
Decameter solar type III bursts: Data classification with use of cluster analysis
Solar Physics - Tập 156 - Trang 131-143 - 1995
N. A. Stepanova, L. L. Bazelyan, E. P. Abranin, A. I. Brazhenko, S. A. Sapogov, Ya. G. Tzybko
The many-parametric data on decametric type III bursts containing more than 1000 events were classified with use of cluster analysis, i.e., the pattern recognition procedure. For the classification such parameters have been used as intensity, duration and degree of circular polarization derived from burst time profiles. The automatic classification has resulted in division of daily samples of type III bursts into classes of bursts, more homogeneous statistically, which can be associated with different components of type III radiation distinguished by their physical origin. For the classes obtained, statistically reliable dependences of the mean intensity on source position can be found which allow one to conclude about the source structure and evolution, as well as about the characteristics defined by a burst generation mechanism and propagation effects.
Coronal Mass Ejection of 15 May 2001: I. Evolution of Morphological Features of the Eruption
Solar Physics - Tập 225 - Trang 337-353 - 2004
D. Maričić, B. Vršnak, A. L. Stanger, A. Veronig
We study the initiation and development of the limb coronal mass ejection (CME) of 15 May 2001, utilizing observations from Mauna Loa Solar Observatory (MLSO), the Solar and Heliospheric Observatory (SOHO), and Yohkoh. The pre-eruption images in various spectral channels show a quiescent prominence imbedded in the coronal void, being overlaid by the coronal arch. After the onset of rapid acceleration, this three-element structure preserved its integrity and appeared in the MLSO MK-IV coronagraph field of view as the three-part CME structure (the frontal rim, the cavity, and the prominence) and continued its motion through the field of view of the SOHO/LASCO coronagraphs up to 30 solar radii. Such observational coverage allows us to measure the relative kinematics of the three-part structure from the very beginning up to the late phases of the eruption. The leading edge and the prominence accelerated simultaneously: the rapid acceleration of the frontal rim and the prominence started at approximately the same time, the prominence perhaps being slightly delayed (4 – 6 min). The leading edge achieved the maximum acceleration amax≈ 600 ± 150 m s−2 at a heliocentric distance 2.4 –2.5 solar radii, whereas the prominence reached amax≈ 380± 50 m s−2, almost simultaneously with the leading edge. Such a distinct synchronization of different parts of the CME provides clear evidence that the entire magnetic arcade, including the prominence, erupts as an entity, showing a kind of self-similar expansion. The CME attained a maximum velocity of vmax≈ 1200 km s−1 at approximately the same time as the peak of the associated soft X-ray flare. Beyond about 10 solar radii, the leading edge of the CME started to decelerate at a≈−20 m s−2, most likely due to the aerodynamic drag. The deceleration of the prominence was delayed for 10 –30 min, which is attributed to its larger inertia.
On umbral flashes in different sunspot groups
Solar Physics - Tập 91 - Trang 51-54 - 1984
I. P. Turova
The results of a statistical investigation of the occurrence of umbral flashes for 40 sunspot groups are reported for the period 1966–1983. The following characteristics were chosen for the analysis: (a) position on the solar disk; (b) group area; (c) sunspot area; (d) maximum magnetic field strength of a sunspot; (e) modified Zürich class; (f) sunspot age; (g) magnetic structure; and (h) flare activity of a group. The dependence of umbral flashes on magnetic structure of a sunspot is the most essential feature. The absence of umbral flashes in the umbrae of main sunspots perhaps may be used as one of the predictors of flare activity.
The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)
Solar Physics - Tập 275 - Trang 17-40 - 2011
James R. Lemen, Alan M. Title, David J. Akin, Paul F. Boerner, Catherine Chou, Jerry F. Drake, Dexter W. Duncan, Christopher G. Edwards, Frank M. Friedlaender, Gary F. Heyman, Neal E. Hurlburt, Noah L. Katz, Gary D. Kushner, Michael Levay, Russell W. Lindgren, Dnyanesh P. Mathur, Edward L. McFeaters, Sarah Mitchell, Roger A. Rehse, Carolus J. Schrijver, Larry A. Springer, Robert A. Stern, Theodore D. Tarbell, Jean-Pierre Wuelser, C. Jacob Wolfson, Carl Yanari, Jay A. Bookbinder, Peter N. Cheimets, David Caldwell, Edward E. Deluca, Richard Gates, Leon Golub, Sang Park, William A. Podgorski, Rock I. Bush, Philip H. Scherrer, Mark A. Gummin, Peter Smith, Gary Auker, Paul Jerram, Peter Pool, Regina Soufli, David L. Windt, Sarah Beardsley, Matthew Clapp, James Lang, Nicholas Waltham
The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe xviii (94 Å), Fe viii, xxi (131 Å), Fe ix (171 Å), Fe xii, xxiv (193 Å), Fe xiv (211 Å), He ii (304 Å), and Fe xvi (335 Å). One telescope observes C iv (near 1600 Å) and the nearby continuum (1700 Å) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6×104 K to 2×107 K. The AIA was launched as a part of NASA’s Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun’s energy is stored and released into the heliosphere and geospace.
Force-free electromagnetic waves
Solar Physics - Tập 117 - Trang 391-397 - 1988
Vladimir A. Osherovich, Erast B. Gliner
The time-dependent Force-Free Electromagnetic Field (FFEMF) is studied. In contrast to the case of Force-Free Magnetic Field (FFMF), it is shown that the FFEMF can occur in the form of waves. The FFEMF wave equation is solved in the case of one spatial dimension. Besides a periodical linear FFEMF wave solutions, the existence of solitary wave solutions is demonstrated. The possible application of FFEMF solutions to solar flares is discussed.
Hα Observations of 8 June, 2004 Venus Transit
Solar Physics - Tập 233 Số 1 - Trang 171-184 - 2006
Ashok Ambastha, B. Ravindra, Sanjay Gosain
An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO
Solar Physics - Tập 292 - Trang 1-16 - 2017
I. M. Chertok, V. V. Grechnev, A. A. Abunin
In our previous articles (Chertok et al. in Solar Phys. 282, 175, 2013; Chertok et al. in Solar Phys. 290, 627, 2015), we presented a preliminary tool for the early diagnostics of the geoeffectiveness of solar eruptions based on the estimate of the total unsigned line-of-sight photospheric magnetic flux in accompanying extreme ultraviolet (EUV) arcades and dimmings. This tool was based on the analysis of eruptions observed during 1996 – 2005 with the Extreme-ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). Empirical relationships were obtained to estimate the probable importance of upcoming space weather disturbances caused by an eruption, which just occurred, without data on the associated coronal mass ejections. In particular, it was possible to estimate the intensity of a non-recurrent geomagnetic storm (GMS) and Forbush decrease (FD), as well as their onset and peak times. After 2010 – 2011, data on solar eruptions are obtained with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We use relatively short intervals of overlapping EIT–AIA and MDI–HMI detailed observations, and additionally, a number of large eruptions over the next five years with the 12-hour cadence EIT images to adapt the SOHO diagnostic tool to SDO data. We show that the adopted brightness thresholds select practically the same areas of arcades and dimmings from the EIT 195 Å and AIA 193 Å image, with a cross-calibration factor of 3.6 – 5.8 (5.0 – 8.2) for the AIA exposure time of 2.0 s (2.9 s). We also find that for the same photospheric areas, the MDI line-of-sight magnetic flux systematically exceeds the HMI flux by a factor of 1.4. Based on these results, the empirical diagnostic relationships obtained from SOHO data are adjusted to SDO instruments. Examples of a post-diagnostics based on SDO data are presented. As before, the tool is applicable to non-recurrent GMSs and FDs caused by nearly central eruptions from active regions, provided that the southern component of the interplanetary magnetic field near the Earth is predominantly negative, which is not predicted by this tool.
Multifractal Properties of Evolving Active Regions
Solar Physics - Tập 248 - Trang 297-309 - 2007
P. A. Conlon, P. T. Gallagher, R. T. J. McAteer, J. Ireland, C. A. Young, P. Kestener, R. J. Hewett, K. Maguire
Magnetohydrodynamic turbulence is thought to be responsible for producing complex, multiscale magnetic field distributions in solar active regions. Here we explore the multiscale properties of a number of evolving active regions using magnetograms from the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The multifractal spectrum was obtained by using a modified box-counting method to study the relationship between magnetic-field multifractality and region evolution and activity. The initial emergence of each active region was found to be accompanied by characteristic changes in the multifractal spectrum. Specifically, the range of multifractal structures (D div) was found to increase during emergence, as was their significance or support (C div). Following this, a decrease in the range in multifractal structures occurred as the regions evolved to become large-scale, coherent structures. From the small sample considered, evidence was found for a direct relationship between the multifractal properties of the flaring regions and their flaring rate.
An evaluation of the possibility of studying flare plasma turbulence using the satellites of Hei line forbidden components
Solar Physics - Tập 90 - Trang 269-279 - 1984
N. M. Firstova
Using the Baranger-Mozer method, we explore the possibility of diagnosing the flare plasma of forbidden Hei lines, that permits the determination of the plasma oscillation frequency and noise level. Examination of the Hei lines observed in solar flare has led us to conclude that: In the spectrum of the solar flare of 26 September, 1963 we detected satellites of the forbidden component of the 3820 Å line and used its relative intensity to derive the level of low-frequency oscillations (∼1.5 kVcm-1).
Tổng số: 8,046   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10