Why Do Temperature and Velocity Have Different Relationships in the Solar Wind and in Interplanetary Coronal Mass Ejections?

Solar Physics - Tập 257 - Trang 169-184 - 2009
P. Démoulin1
1Observatoire de Paris, LESIA, UMR 8109 (CNRS), Meudon Principal Cedex, France

Tóm tắt

In-situ observations of the solar wind (SW) show temperature increasing with the wind speed, whereas such a dependence is not observed in interplanetary coronal mass ejections (ICMEs). The aim of this paper is to understand the main origin of this correlation in the SW and its absence in ICMEs. For that purpose both the internal-energy and momentum equations are solved analytically with various approximations. The internal-energy equation does not provide a strong link between temperature and velocity, but the momentum equation does. Indeed, the observed correlation in the open magnetic-field configuration of the SW is the result of its acceleration and heating close to the Sun. In contrast, the magnetic configuration of ICMEs is closed, and moreover the momentum equation is dominated by magnetic forces. This implies no significant correlation between temperature and velocity, as observed.

Tài liệu tham khảo

Attrill, G.D.R., van Driel-Gesztelyi, L., Démoulin, P., Zhukov, A.N., Steed, K., Harra, L.K., Mandrini, C.H., Linker, J.: 2008, The recovery of CME-related dimmings and the ICME’s enduring magnetic connection to the Sun. Solar Phys. 252, 349 – 372. doi:10.1007/s11207-008-9255-z. Cargill, P.J., Schmidt, J.M.: 2002, Modelling interplanetary CMEs using magnetohydrodynamic simulations. Ann. Geophys. 20, 879 – 890. Chen, J.: 1989, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453 – 470. Chen, J.: 1996, Theory of prominence eruption and propagation: Interplanetary consequences. J. Geophys. Res. 101, 27499 – 27520. doi:10.1029/96JA02644. Cranmer, S.R.: 2002, Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229 – 294. Crooker, N.U., Horbury, T.S.: 2006, Solar imprint on ICMEs, their magnetic connectivity, and heliospheric evolution. Space Sci. Rev. 123, 93 – 109. doi:10.1007/s11214-006-9014-0. Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A.N., Rodriguez, L., Aran, A., Menvielle, M., Poedts, S.: 2009, Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. 114, 02109. doi:10.1029/2008JA013102. Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys. doi:10.1051/0004-6361/200810971. Elliott, H.A., McComas, D.J., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Gloeckler, G., Zurbuchen, T.H.: 2005, An improved expected temperature formula for identifying interplanetary coronal mass ejections. J. Geophys. Res. 110, 04103. doi:10.1029/2004JA010794. Feldman, W.C., Barraclough, B.L., Gosling, J.T., McComas, D.J., Riley, P., Goldstein, B.E., Balogh, A.: 1998, Ion energy equation for the high-speed solar wind: Ulysses observations. J. Geophys. Res. 103, 14547 – 14558. doi:10.1029/98JA00963. Gazis, P.R., Barnes, A., Mihalov, J.D., Lazarus, A.J.: 1994, Solar wind velocity and temperature in the outer heliosphere. J. Geophys. Res. 99, 6561 – 6573. Gazis, P.R., Balogh, A., Dalla, S., Decker, R., Heber, B., Horbury, T., Kilchenmann, A., Kota, J., Kucharek, H., Kunow, H., Lario, D., Potgieter, M.S., Richardson, J.D., Riley, P., Rodriguez, L., Siscoe, G., von Steiger, R.: 2006, ICMEs at high latitudes and in the outer heliosphere. Space Sci. Rev. 123, 417 – 451. doi:10.1007/s11214-006-9023-z. Goldstein, B.E., Neugebauer, M., Phillips, J.L., Bame, S., Gosling, J.T., McComas, D., Wang, Y.M., Sheeley, N.R., Suess, S.T.: 1996, ULYSSES plasma parameters: Latitudinal, radial, and temporal variations. Astron. Astrophys. 316, 296 – 303. Hollweg, J.V.: 1976, Collisionless electron heat conduction in the solar wind. J. Geophys. Res. 81, 1649 – 1658. Issautier, K., Meyer-Vernet, N., Moncuquet, M., Hoang, S.: 1998, Solar wind radial and latitudinal structure—Electron density and core temperature from ULYSSES thermal noise spectroscopy. J. Geophys. Res. 103, 1969 – 1979. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393 – 436. doi:10.1007/s11207-006-0133-2. Leblanc, Y., Dulk, G.A., Bougeret, J.L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165 – 180. Liu, Y., Richardson, J.D., Belcher, J.W.: 2005, A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet. Space Sci. 53, 3 – 17. doi:10.1016/j.pss.2004.09.023. Lopez, R.E., Freeman, J.W.: 1986, Solar wind proton temperature velocity relationship. J. Geophys. Res. 91, 1701 – 1705. Maksimovic, M., Gary, S.P., Skoug, R.M.: 2000, Solar wind electron suprathermal strength and temperature gradients’ Ulysses observations. J. Geophys. Res. 105(A8), 18337 – 18350. doi:0148-0227/00/2000JA90003909.00. Marsch, E., Thieme, K.M., Rosenbauer, H., Pilipp, W.G.: 1989, Cooling of solar wind electrons inside 0.3 AU. J. Geophys. Res. 94, 6893 – 6898. Matthaeus, W.H., Elliott, H.A., McComas, D.J.: 2006, Correlation of speed and temperature in the solar wind. J. Geophys. Res. 111, 10103. doi:10.1029/2006JA011636. Meyer-Vernet, N.: 2007, Basics of Solar Wind, Cambridge University Press, Cambridge. Neugebauer, M., Steinberg, J.T., Tokar, R.L., Barraclough, B.L., Dors, E.E., Wiens, R.C., Gingerich, D.E., Luckey, D., Whiteaker, D.B.: 2003, Genesis on-board determination of the solar wind flow regime. Space Sci. Rev. 105, 661 – 679. doi:10.1023/A:1024478129261. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 – 676. Parker, E.N.: 1963, Interplanetary Dynamical Processes, Interscience Publishers, New York. Parker, E.N.: 2007, Solar wind. In: Kamide, Y., Chian, A. (eds.) Handbook of the Solar-Terrestrial Environment, Springer, Berlin, 95 – 116. Pilipp, W.G., Miggenrieder, H., Müehlhäeuser, K.H., Rosenbauer, H., Schwenn, R.: 1990, Large-scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. J. Geophys. Res. 95, 6305 – 6329. Phillips, J.L., Feldman, W.C., Gosling, J.T., Scime, E.E.: 1995, Solar wind plasma electron parameters based on aligned observations by ICE and ULYSSES. Adv. Space Res. 169, 95 – 100. Richardson, J.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind and their association with ejecta. J. Geophys. Res. 100, 23397. Richardson, J.D., Paularena, K.I., Lazarus, A.J., Belcher, J.W.: 1995, Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys. Res. Lett. 22, 325 – 328. Shen, F., Feng, X., Wu, S.T., Xiang, C.: 2007, Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event. J. Geophys. Res. 112, 06109. doi:10.1029/2006JA012164. Skoug, R.M., Feldman, W.C., Gosling, J.T., McComas, D.J., Reisenfeld, D.B., Smith, C.W., Lepping, R.P., Balogh, A.: 2000, Radial variation of solar wind electrons inside a magnetic cloud observed at 1 and 5 AU. J. Geophys. Res. 105, 27269 – 27276. doi:10.1029/2000JA000095. Totten, T.L., Freeman, J.W., Arya, S.: 1995, An empirical determination of the polytropic index for the free-streaming solar wind using HELIOS 1 data. J. Geophys. Res. 100, 13 – 17. Velli, M.: 2001, Hydrodynamics of the solar wind expansion. Astrophys. Space Sci. 277, 157 – 167. doi:10.1023/A:1012237708634. Wang, C., Du, D., Richardson, J.D.: 2005, Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU. J. Geophys. Res. 110, 10107. doi:10.1029/2005JA011198. Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., Gosling, J.T., Horbury, T., Kilchenmann, A., Richardson, I.G., Richardson, J.D., Riley, P., Rodriguez, L., Steiger, R.V., Wurz, P., Zurbuchen, T.H.: 2006, Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123, 177 – 216. doi:10.1007/s11214-006-9017-x. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31 – 43. doi:10.1007/s11214-006-9010-4.