thumbnail

Oxford University Press (OUP)

 

  1532-2548

 

Cơ quản chủ quản:  N/A

Lĩnh vực:

Các bài báo tiêu biểu

Photocontrol of Fungal Spore Germination
Tập 56 Số 6 - Trang 847-849 - 1975
John A. Lucas, Richard E. Kendrick, Curtis V. Givan
Quantification of the Brassinosteroid Insensitive1 Receptor in Planta
Tập 156 Số 4 - Trang 1691-1700 - 2011
G. Wilma van Esse, Adrie H. Westphal, Ramya Preethi Surendran, Catherine Albrecht, Boudewijn van Veen, Jan Willem Borst, Sacco C. de Vries
AbstractIn plants, green fluorescent protein (GFP) is routinely used to determine the subcellular location of fusion proteins. Here, we show that confocal imaging can be employed to approximate the number of GFP-labeled protein molecules present in living Arabidopsis (Arabidopsis thaliana) root cells. The technique involves calibration with soluble GFP to provide a usable protein concentration range within the confocal volume of the microscope. As a proof of principle, we quantified the Brassinosteroid Insensitive1 (BRI1) receptor fused to GFP, under control of its own promoter. The number of BRI1-GFP molecules per root epidermal cell ranges from 22,000 in the meristem and 130,000 in the elongation zone to 80,000 in the maturation zone, indicating that up to 6-fold differences in BRI1 receptor content exist. In contrast, when taking into account differences in cell size, BRI1-GFP receptor density in the plasma membrane is kept constant at 12 receptors μm−2 in all cells throughout the meristem and elongation zone. Only the quiescent center and columella cells deviate from this pattern and have 5 to 6 receptors μm−2. Remarkably, root cell sensitivity toward brassinosteroids appears to coincide with uniform meristem receptor density.
Analysis of Arabidopsis with Highly Reduced Levels of Malate and Fumarate Sheds Light on the Role of These Organic Acids as Storage Carbon Molecules
Tập 152 Số 3 - Trang 1251-1262 - 2010
Martina B. Zell, Holger Fahnenstich, Alexandra Maier, Mariana Saigo, Elena V. Voznesenskaya, Gerald E. Edwards, Carlos S. Andreo, Frank Schleifenbaum, Christiane Zell, Marı́a F. Drincovich, Verónica G. Maurino
Abstract While malate and fumarate participate in a multiplicity of pathways in plant metabolism, the function of these organic acids as carbon stores in C3 plants has not been deeply addressed. Here, Arabidopsis (Arabidopsis thaliana) plants overexpressing a maize (Zea mays) plastidic NADP-malic enzyme (MEm plants) were used to analyze the consequences of sustained low malate and fumarate levels on the physiology of this C3 plant. When grown in short days (sd), MEm plants developed a pale-green phenotype with decreased biomass and increased specific leaf area, with thin leaves having lower photosynthetic performance. These features were absent in plants growing in long days. The analysis of metabolite levels of rosettes from transgenic plants indicated similar disturbances in both sd and long days, with very low levels of malate and fumarate. Determinations of the respiratory quotient by the end of the night indicated a shift from carbohydrates to organic acids as the main substrates for respiration in the wild type, while MEm plants use more reduced compounds, like fatty acids and proteins, to fuel respiration. It is concluded that the alterations observed in sd MEm plants are a consequence of impairment in the supply of carbon skeletons during a long dark period. This carbon starvation phenotype observed at the end of the night demonstrates a physiological role of the C4 acids, which may be a constitutive function in plants.
Opportunities to Explore Plant Membrane Organization with Super-Resolution Microscopy
Tập 154 Số 2 - Trang 463-466 - 2010
Ryan Gutierrez, Guido Großmann, Wolf B. Frommer, David W. Ehrhardt
Herbicides as Weed Control Agents: State of the Art: I. Weed Control Research and Safener Technology: The Path to Modern Agriculture
Tập 166 Số 3 - Trang 1119-1131 - 2014
Hansjoerg Kraehmer, Bernd Laber, Chris Rosinger, Arno Schulz
Abstract The purpose of modern industrial herbicides is to control weeds. The species of weeds that plague crops today are a consequence of the historical past, being related to the history of the evolution of crops and farming practices. Chemical weed control began over a century ago with inorganic compounds and transitioned to the age of organic herbicides. Targeted herbicide research has created a steady stream of successful products. However, safeners have proven to be more difficult to find. Once found, the mode of action of the safener must be determined, partly to help in the discovery of further compounds within the same class. However, mounting regulatory and economic pressure has changed the industry completely, making it harder to find a successful herbicide. Herbicide resistance has also become a major problem, increasing the difficulty of controlling weeds. As a result, the development of new molecules has become a rare event today.
Extracellular Proteins in Pea Root Tip and Border Cell Exudates
Tập 143 Số 2 - Trang 773-783 - 2007
Fushi Wen, Hans D. VanEtten, George Tsaprailis, Martha C. Hawes
AbstractNewly generated plant tissue is inherently sensitive to infection. Yet, when pea (Pisum sativum) roots are inoculated with the pea pathogen, Nectria haematococca, most newly generated root tips remain uninfected even though most roots develop lesions just behind the tip in the region of elongation. The resistance mechanism is unknown but is correlated spatially with the presence of border cells on the cap periphery. Previously, an array of >100 extracellular proteins was found to be released while border cell separation proceeds. Here we report that protein secretion from pea root caps is induced in correlation with border cell separation. When this root cap secretome was proteolytically degraded during inoculation of pea roots with N. haematococca, the percentage of infected root tips increased from 4% ± 3% to 100%. In control experiments, protease treatment of conidia or roots had no effect on growth and development of the fungus or the plant. A complex of >100 extracellular proteins was confirmed, by multidimensional protein identification technology, to comprise the root cap secretome. In addition to defense-related and signaling enzymes known to be present in the plant apoplast were ribosomal proteins, 14-3-3 proteins, and others typically associated with intracellular localization but recently shown to be extracellular components of microbial biofilms. We conclude that the root cap, long known to release a high molecular weight polysaccharide mucilage and thousands of living cells into the incipient rhizosphere, also secretes a complex mixture of proteins that appear to function in protection of the root tip from infection.
Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis <i>mlo2</i> Mutant
Tập 152 Số 3 - Trang 1544-1561 - 2010
Chiara Consonni, Paweł Bednarek, Matt Humphry, Fedra Francocci, Simone Ferrari, Anne Harzen, Emiel Ver Loren van Themaat, Ralph Panstruga
Abstract Arabidopsis (Arabidopsis thaliana) genes MILDEW RESISTANCE LOCUS O2 (MLO2), MLO6, and MLO12 exhibit unequal genetic redundancy with respect to the modulation of defense responses against powdery mildew fungi and the control of developmental phenotypes such as premature leaf decay. We show that early chlorosis and necrosis of rosette leaves in mlo2 mlo6 mlo12 mutants reflects an authentic but untimely leaf senescence program. Comparative transcriptional profiling revealed that transcripts of several genes encoding tryptophan biosynthetic and metabolic enzymes hyperaccumulate during vegetative development in the mlo2 mlo6 mlo12 mutant. Elevated expression levels of these genes correlate with altered steady-state levels of several indolic metabolites, including the phytoalexin camalexin and indolic glucosinolates, during development in the mlo2 single mutant and the mlo2 mlo6 mlo12 triple mutant. Results of genetic epistasis analysis suggest a decisive role for indolic metabolites in mlo2-conditioned antifungal defense against both biotrophic powdery mildews and a camalexin-sensitive strain of the necrotrophic fungus Botrytis cinerea. The wound- and pathogen-responsive callose synthase POWDERY MILDEW RESISTANCE4/GLUCAN SYNTHASE-LIKE5 was found to be responsible for the spontaneous callose deposits in mlo2 mutant plants but dispensable for mlo2-conditioned penetration resistance. Our data strengthen the notion that powdery mildew resistance of mlo2 genotypes is based on the same defense execution machinery as innate antifungal immune responses that restrict the invasion of nonadapted fungal pathogens.
Assembly of an Interactive Correlation Network for the Arabidopsis Genome Using a Novel Heuristic Clustering Algorithm
Tập 152 Số 1 - Trang 29-43 - 2009
Marek Mutwil, Björn Usadel, Moritz Schuݶtte, Ann E. Loraine, Oliver Ebenhöh, Staffan Persson
Abstract A vital quest in biology is comprehensible visualization and interpretation of correlation relationships on a genome scale. Such relationships may be represented in the form of networks, which usually require disassembly into smaller manageable units, or clusters, to facilitate interpretation. Several graph-clustering algorithms that may be used to visualize biological networks are available. However, only some of these support weighted edges, and none provides good control of cluster sizes, which is crucial for comprehensible visualization of large networks. We constructed an interactive coexpression network for the Arabidopsis (Arabidopsis thaliana) genome using a novel Heuristic Cluster Chiseling Algorithm (HCCA) that supports weighted edges and that may control average cluster sizes. Comparative clustering analyses demonstrated that the HCCA performed as well as, or better than, the commonly used Markov, MCODE, and k-means clustering algorithms. We mapped MapMan ontology terms onto coexpressed node vicinities of the network, which revealed transcriptional organization of previously unrelated cellular processes. We further explored the predictive power of this network through mutant analyses and identified six new genes that are essential to plant growth. We show that the HCCA-partitioned network constitutes an ideal “cartographic” platform for visualization of correlation networks. This approach rapidly provides network partitions with relative uniform cluster sizes on a genome-scale level and may thus be used for correlation network layouts also for other species.
<i>Blufensin1</i>Negatively Impacts Basal Defense in Response to Barley Powdery Mildew
Tập 149 Số 1 - Trang 271-285 - 2009
Yan Meng, Matthew Moscou, Roger P. Wise
AbstractPlants have evolved complex regulatory mechanisms to control the defense response against microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSIN1 (BLN1), a small peptide belonging to a novel family of proteins in barley (Hordeum vulgare), is highly induced by attack from the obligate biotrophic fungus Blumeria graminis f. sp. hordei (Bgh), casual agent of powdery mildew disease. Computational interrogation of the Bln1 gene family determined that members reside solely in the BEP clade of the Poaceae family, specifically, barley, rice (Oryza sativa), and wheat (Triticum aestivum). Barley stripe mosaic virus-induced gene silencing of Bln1 enhanced plant resistance in compatible interactions, regardless of the presence or absence of functional Mla coiled-coil, nucleotide-binding site, Leu-rich repeat alleles, indicating that BLN1 can function in an R-gene-independent manner. Likewise, transient overexpression of Bln1 significantly increased accessibility toward virulent Bgh. Moreover, silencing in plants harboring the Mlo susceptibility factor decreased accessibility to Bgh, suggesting that BLN1 functions in parallel with or upstream of MLO to modulate penetration resistance. Collectively, these data suggest that the grass-specific Bln1 negatively impacts basal defense against Bgh.
The Barley MLO Modulator of Defense and Cell Death Is Responsive to Biotic and Abiotic Stress Stimuli
Tập 129 Số 3 - Trang 1076-1085 - 2002
Pietro Piffanelli, Fasong Zhou, Catarina Casais, James Orme, Birgit Jarosch, Ulrich Schaffrath, Nicholas C. Collins, Ralph Panstruga, Paul Schulze‐Lefert
Abstract Lack of the barley (Hordeum vulgare) seven-transmembrane domain MLO protein confers resistance against the fungal pathogen Blumeria graminis f. sp.hordei (Bgh). To broaden the basis for MLO structure/function studies, we sequenced additionalmlo resistance alleles, two of which confer only partial resistance. Wild-type MLO dampens the cell wall-restricted hydrogen peroxide burst at points of attempted fungal penetration of the epidermal cell wall, and in subtending mesophyll cells, it suppresses a second oxidative burst and cell death. Although theBgh-induced cell death in mlo plants is spatially and temporally separated from resistance, we show that the two processes are linked. Uninoculated mutant mlo plants exhibit spontaneous mesophyll cell death that appears to be part of accelerated leaf senescence. Mlo transcript abundance increases in response to Bgh, rice (Oryza sativa) blast, wounding, paraquat treatment, a wheat powdery mildew-derived carbohydrate elicitor, and during leaf senescence. This suggests a broad involvement of Mlo in cell death protection and in responses to biotic and abiotic stresses.