Metabolic Brain Disease
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Acylpeptide hydrolase (APEH) sequence variants with potential impact on the metabolism of the antiepileptic drug valproic acid
Metabolic Brain Disease - Tập 34 - Trang 1629-1634 - 2019
Acylpeptide hydrolase (APEH) is a serine protease involved in the recycling of amino acids from acylated peptides. Beyond that, APEH participates in the metabolism of the antiepileptic drug valproic acid (2-propylpentanoic acid; VPA) by catalyzing the hydrolysis of the VPA metabolite valproylglucuronide (VPA-G) to its aglycon. It has been shown that the inhibition of APEH by carbapenem antibiotics decreases therapeutic VPA levels by enhancing the urinary elimination of VPA in form of VPA-G. As various sequence variants of the APEH gene (which encodes the APEH protein) are listed in databases, but have not been functionally characterized yet, we assume, that some APEH sequence variants may have pharmacogenetic relevance due to their impaired cleavage of VPA-G. APEH sequence variants predicted to affect enzyme activity were selected from databases, and overexpressed in HEK293 cells (stable transfection), a cell line derived from human embryonic kidney cells. APEH activity in cell homogenates was determined spectrophotometrically by monitoring the hydrolysis of the synthetic substrate N-acetyl-L-alanine-nitroanilide. APEH enzyme activity and protein expression of the sequence variants were compared with those of APEH with the reference sequence. Three out of five tested missense sequence variants resulted in a considerable decrease of enzyme activity assessed with the standard substrate N-acetyl-L-alanine-nitroanilide, suggesting an effect on pharmacokinetics of VPA. Our work underlines the need to consider the APEH genotype in investigations of altered VPA metabolism.
Cannabidiol promotes neurogenesis in the dentate gyrus during an abstinence period in rats following chronic exposure to methamphetamine
Metabolic Brain Disease - Tập 36 Số 6 - Trang 1381-1390 - 2021
N-Acetylcysteine attenuates cerebral complications of non-acetaminophen-induced acute liver failure in mice: antioxidant and anti-inflammatory mechanisms
Metabolic Brain Disease - Tập 25 - Trang 241-249 - 2010
N-acetylcysteine (NAC) is an effective antidote to treat acetaminophen (APAP)-induced acute liver failure (ALF). NAC is hepatoprotective and prevents the neurological complications of ALF, namely hepatic encephalopathy and brain edema. The protective effect of NAC and its mechanisms of action in ALF due to other toxins, however, are still controversial. In the present study, we investigated the effects of NAC in relation to liver pathology, hepatic and cerebral glutathione, plasma ammonia concentrations, progression of encephalopathy, cerebral edema, and plasma proinflammatory cytokines in mice with ALF resulting from azoxymethane (AOM) hepatotoxicity, a well characterized model of toxic liver injury. Male C57BL/6 mice were treated with AOM (100 µg/g; i.p.) or saline and sacrificed at coma stage of encephalopathy in parallel with AOM mice administered NAC (1.2 g/kg; i.p.). AOM administration led to hepatic damage, significant increase in plasma transaminase activity, decreased hepatic glutathione levels and brain GSH/GSSG ratios as well as increased expression of plasma proinflammatory cytokines. NAC treatment of AOM mice led to reduced hepatic damage and improvement in neurological function, normalization of brain and hepatic glutathione levels as well as selective attenuation in expression of plasma proinflammatory cytokines. These findings demonstrate that the beneficial effects of NAC in experimental non-APAP-induced ALF involves both antioxidant and anti-inflammatory mechanisms.
Newly observed thalamic involvement and mutations of the HEXA gene in a Korean patient with juvenile GM2 gangliosidosis
Metabolic Brain Disease - Tập 23 - Trang 235-242 - 2008
Neuroimaging studies of patients with GM2 gangliosidosis are rare. The thalamus and basal ganglia are principally involved in patients affected by the infantile form of GM2 gangliosidosis. Unlike in the infantile form, in juvenile or adult type GM2 gangliosidosis, progressive cortical and cerebellar atrophy is the main abnormality seen on conventional magnetic resonance imaging (MRI); no basal ganglial or thalamic impairment were observed. This report is of a Korean girl with subacute onset, severe deficiency of hexosaminidase A activity and mutations (Arg137Term, Ala246Thr) of the HEXA gene. A 3.5-year-old girl who was previously in good health was evaluated for hypotonia and ataxia 3 months ago and showed progressive developmental deterioration, including cognitive decline. Serial brain MRI showed progressive overall volume decrease of the entire brain and thalamic atrophy. Fluorine-18 FDG PET scan showed severe decreased uptake in bilateral thalamus and diffuse cerebral cortex. We suggest, through our experience, that the thalamic involvement in MR imaging and FDG-PET can be observed in the juvenile form of GM2 gangliosidosis, and we suspect the association of mutations in the HEXA gene.
Thiamine deficiency-related brain dysfunction in chronic liver failure
Metabolic Brain Disease - Tập 24 - Trang 189-196 - 2008
End-stage chronic liver failure results in thiamine deficiency caused principally by depletion of liver thiamine stores. Chronic liver failure also leads to increased brain ammonia concentrations. Both ammonia and thiamine deficiency result in decreased activity of α-ketoglutarate dehydrogenase, a rate-limiting tricarboxylic acid cycle enzyme. Loss of enzyme activity results in a mitochondrial oxidative deficit in brain and consequent increases in brain lactate, oxidative/nitrosative stress, cellular energy impairment and release of proinflammatory cytokines, all of which have been described in brain in end-stage chronic liver failure. Synergistic effects of ammonia exposure and thiamine deficiency could explain the diencephalic and cerebellar symptomatology described in patients with “hepatic encephalopathy”. Unsuspected brain lesions due to thiamine deficiency could explain the incomplete resolution of neuropsychiatric symptoms following the use of ammonia-lowering agents or liver transplantation in patients with end-stage chronic liver failure. These findings underscore the need for prompt, effective thiamine supplementation in all patients with chronic liver failure.
Characterizing exposures and neurobehavioral performance in Egyptian adolescent pesticide applicators
Metabolic Brain Disease - Tập 29 - Trang 845-855 - 2014
Children and adolescents may have occupational exposure to pesticides. Although previous studies examining prenatal pesticide exposure have identified neurobehavioral deficits in children, there are limited studies examining the impact of occupational exposure in children. The objectives of this study are to estimate exposures to the organophosphorus pesticide, chlorpyrifos (CPF), by measuring urinary levels of 3,5,6-trichloro-2-pyridinol (TCPy), a specific CPF metabolite, and blood cholinesterase (ChE) activities and to characterize neurobehavioral performance in adolescents working as seasonal pesticide applicators and non-applicator controls. A neurobehavioral test battery, consisting of 14 tests, was used to assess a broad range of functions. Applicators performed worse than controls on the majority of tests. Principal component analysis was used to reduce the number of outcome variables and two components, focused on reasoning-short-term memory and attention-executive functioning, showed significant deficits in applicators compared to non-applicators. Elevated metabolite levels were found in the applicators compared to the non-applicators, confirming CPF exposure in the applicators. Although this study is limited by a small sample size, it provides preliminary evidence of moderate CPF exposures, decreased blood ChE in some applicators and decreased neurobehavioral performance in an adolescent working population.
In major affective disorders, early life trauma predict increased nitro-oxidative stress, lipid peroxidation and protein oxidation and recurrence of major affective disorders, suicidal behaviors and a lowered quality of life
Metabolic Brain Disease - - 2018
Early life trauma (ELT) may increase the risk towards bipolar disorder (BD) and major depression (MDD), disorders associated with activated neuro-oxidative and neuro-nitrosative stress (O&NS) pathways. It has remained elusive whether ELTs are associated with O&NS and which ELTs are associated with distinct affective disorder phenotypes. This case-control study examined patients with BD (n = 68) and MDD (n = 37) and healthy controls (n = 66). The Child Trauma Questionnaire (CTQ) was used to assess specific ELT. We measured malondialdehyde (MDA), lipid hydroperoxides (LOOH), superoxide dismutase (SOD), catalase, advanced oxidation protein products (AOPP); NO metabolites (NOx), paraoxonase 1 activity, zinc, albumin, high density lipoprotein cholesterol and -SH groups and computed z-unit weighted composite scores. Physical neglect significantly predicts higher z-unit weighted composite scores of LOOH+SOD, LOOH+SOD+NOx, LOOH+SOD+NOx + MDA and LOOH+SOD+NOx + AOPP. Sexual abuse was associated with a significantly lower composite score of zinc+albumin+SH. Emotional abuse was associated with severity of depression and anxiety, number of depressive and manic episodes, alcohol and hypnotics use, lifetime suicidal behavior and lowered quality of life. Sexual abuse was associated with an increased risk towards BD, but not MDD. ELT, especially physical neglect, may drive increased (nitro-)oxidative stress coupled with lipid and protein oxidation, which - together with emotional abuse - may play a role in severity of illness, lowered quality of life and MDD. ELTs are also associated with the onset of BD, but this link did not appear to be related to activated O&NS pathways. These novel findings deserve confirmation in prospective studies.
Modulation of miR-139-5p on chronic morphine-induced, naloxone-precipitated cAMP overshoot in vitro
Metabolic Brain Disease - Tập 33 - Trang 1501-1508 - 2018
Chronic exposure to morphine can produce tolerance, dependence and addiction, but the underlying neurobiological basis is still incompletely understood. c-Jun, as an important component of the activator protein-1 transcription factor, is supposed to take part in regulating gene expression in AC/cAMP/PKA signaling. MicroRNA (miRNA) has emerged as a critical regulator of neuronal functions. Although a number of miRNAs have been reported to regulate the μ-opioid receptor expression, there has been no report about miRNAs to regulate chronic morphine-induced, naloxone-precipitated cAMP overshoot. Our results showed that chronic morphine pretreatment induced naloxone-precipitated cAMP overshoot in concentration- and time-dependent manners in HEK 293/μ cells. Chronic morphine pretreatment alone elevated both c-Jun protein and miR-139-5p expression levels, while dramatically artificial elevation of miR-139-5p inhibited c-Jun at the translational level. Furthermore, dramatically artificial upregulation of intracellular miR-139-5p limited chronic morphine-induced, naloxone-precipitated cAMP overshoot. These findings suggested that miR-139-5p was involved in regulating chronic morphine-induced, naloxone-precipitated cAMP overshoot in a negative feedback manner through its target c-Jun, which extends our understanding of neurobiological mechanisms underlying morphine dependence and addiction.
Downregulation of miR-185 is a common pathogenic event in 22q11.2 deletion syndrome-related and idiopathic schizophrenia
Metabolic Brain Disease - Tập 37 Số 4 - Trang 1175-1184 - 2022
Metabolomic analysis of animal models of depression
Metabolic Brain Disease - - 2020
Our understanding of the molecular mechanisms of depression remains largely unclear. Previous studies have shown that the prefrontal cortex (PFC) is among most important brain regions that exhibits metabolic changes in depression. A comprehensive analysis based on candidate metabolites in the PFC of animal models of depression will provide valuable information for understanding the pathogenic mechanism underlying depression. Candidate metabolites that are potentially involved in the metabolic changes of the PFC in animal models of depression were retrieved from the Metabolite Network of Depression Database. The significantly altered metabolic pathways were revealed by canonical pathway analysis, and the relationships among altered pathways were explored by pathway crosstalk analysis. Additionally, drug-associated pathways were investigated using drug-associated metabolite set enrichment analysis. The interrelationships among metabolites, proteins, and other molecules were analyzed by molecular network analysis. Among 88 candidate metabolites, 87 altered canonical pathways were identified, and the top five ranked pathways were tRNA charging, the endocannabinoid neuronal synapse pathway, (S)-reticuline biosynthesis II, catecholamine biosynthesis, and GABA receptor signaling. Pathway crosstalk analysis revealed that these altered pathways were grouped into three interlinked modules involved in amino acid metabolism, nervous system signaling/neurotransmitters, and nucleotide metabolism. In the drug-associated metabolite set enrichment analysis, the main enriched drug pathways were opioid-related and antibiotic-related action pathways. Furthermore, the most significantly altered molecular network was involved in amino acid metabolism, molecular transport, and small molecule biochemistry. This study provides important clues for the metabolic characteristics of the PFC in depression.
Tổng số: 2,017
- 1
- 2
- 3
- 4
- 5
- 6
- 10