Protective effect of resveratrol on citrullinemia type I-induced brain oxidative damage in male rats

Metabolic Brain Disease - Tập 36 - Trang 685-699 - 2021
Larissa Delmonego1, Thayná Patachini Maia2, Débora Delwing-Dal Magro3, Karine Louize Vincenzi1, Aline Barbosa Lima1, Luana Carla Pscheidt4, Letícia Eger4, Daniela Delwing-de Lima1,2
1Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville – UNIVILLE, Joinville, Brazil
2Departamento de Medicina, Universidade da Região de Joinville – UNIVILLE, Joinville, Brazil
3Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau - FURB, Blumenau, Brazil
4Departamento de Farmácia, Universidade da Região de Joinville – UNIVILLE, Joinville, Brazil

Tóm tắt

Citrullinemia Type I is an inborn error, which leads to accumulation of citrulline and ammonia in blood and body tissues. We evaluated the in vitro effects of citrulline, ammonia and the influence of resveratrol on oxidative stress parameters in the cerebrum of 30- and 60-day-old male Wistar rats. Citrulline (0.1, 2.5, 5.0 mM), ammonia (0.01, 0.1, 1.0 mM) and resveratrol (0.01, 0.1, 0.5 mM) were added to the assays to measure thiobarbituric acid reactive substances (TBA-RS), total sulfhydryl content and the activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Citrulline (2.5 and 5.0 mM) increased TBA-RS in the cerebellum of 30-day-old and in the cerebral cortex and cerebellum of 60-day-old. Citrulline (5.0 mM) increased SOD and reduced GSH-Px in the hippocampus of 30-day-old, whereas in the cerebellum it increased GSH-Px. In the cerebral cortex, 2.5 and 5.0 mM citrulline reduced GSH-Px. In 60-day-old, 2.5 and 5.0 mM citrulline increased SOD in the cerebellum, increased GSH-Px in the cerebral cortex and 5.0 mM citrulline reduced CAT and increased SOD in the cerebral cortex. Ammonia (0.1 and 1.0 mM) reduced the sulfhydryl content in the cerebral cortex of 30- and 60-day-old, 1.0 mM ammonia increased SOD and reduced GSH-Px in the cerebellum of 30-day-old and increased SOD in the hippocampus and cerebellum of 60-day-old. Resveratrol was able to prevent the majority of these alterations. Thus, citrulline and ammonia induce oxidative stress in the cerebrum of rats; however, resveratrol was able to exert antioxidant effects against these substances.

Tài liệu tham khảo

Achkar MT, Novaes GM, Silva MJD, Vilegas W (2013) Propriedade antioxidante de compostos fenólicos: Importância na dieta e na conservação dos alimentos. Rev da Univ Val do Rio Verde 11:398–406. https://doi.org/10.5892/ruvrd.v11i2.398406 Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126 Aksenov M, Markersbery W (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145 de Andrade Júnior DR, de Souza RB, dos Santos SA, de Andrade DR (2005) Os radicais livres de oxigênio e as doenças pulmonares. J Bras Pneumol 31:60–68. https://doi.org/10.1590/S1806-37132005000100011 Angelo PM, Jorge N (2007) Compostos fenólicos em alimentos – Uma breve revisão. Rev Inst Adolfo Lutz 66:1–9 de Araújo APQC (2004) Doenças metabólicas com manifestações psiquiátricas. Rev Psiquiatr Clínica 31:285–289. https://doi.org/10.1590/S0101-60832004000600003 Arteaga O, Revuelta M, Urigüen L, Álvarez A, Montalvo H, Hilario E (2015) Pretreatment with resveratrol prevents neuronal injury and cognitive deficits induced by perinatal hypoxia-ischemia in rats. PLoS One 10:e0142424 Barbosa KBF, Costa NMB, Alfenas RDCG et al (2010) Estresse oxidativo: Conceito, implicações e fatores modulatórios. Rev Nutr 23:629–643. https://doi.org/10.1590/S1415-52732010000400013 Barreiros ALBS, David JM, David JP (2006) Estresse oxidativo: Relação entre geração de espécies reativas e defesa do organismo. Quim Nova 29:113–123. https://doi.org/10.1590/S0100-40422006000100021 Barros PP, Goncalves GMS, da Silva GH et al (2017) Lycopene and resveratrol pretreatment did not interfere with the liver of hepatectomized rats. Acta Cirúrgica Bras 32:194–202. https://doi.org/10.1590/S0102-865020170030000003 Bastianetto S, Krantic S, Chabot JG, Quirion R (2011) Possible involvement of programmed cell death pathways in the neuroprotective action of polyphenols. Curr. Alzheimer Res 8:445–451 Belguendouz L, Frémont L, Gozzelino MT (1998) Interaction of transresveratrol with plasma lipoproteins. Biochem Pharmacol 55:811–816. https://doi.org/10.1016/S0006-2952(97)00544-3 BRASIL (2008) Lei n° 11.794, de 08 de outubro de 2008. Regulam o inciso VII do § 1o do art 225 da Constituição Fed estabelecendo procedimentos para o uso científico animais; revoga a Lei no 6638, 8 maio 1979; e dá outras Provid Brusilow SW, Horwich A (2001) Urea cycle enzymes. In: the metabolic and molecular basis of inherited disease., 8a. McGraw-hill, New York, pp 1909–1963 Cavallaro A, Ainis T, Bottari C, Fimiani V (2003) Effect of resveratrol on some activities of isolated and in whole blood human neutrophils. Physiol Res 52:555–562 Clancy R, Chung H (1991) EEG changes during recovery from acute severe neonatal citrullinemia. Electroencephalogr Clin Neurophysiol 78:222–227 Degáspari CH, Waszczynskyj N (2004) Propriedades Antioxidantes De Compostos Fenólicos. Visão Acadêmica 5:33–40. https://doi.org/10.5380/acd.v5i1.540 Dos Santos AQ, Nardim P, Funchal C et al (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167 El Husny AS, Fernandes-Caldato MC (2006) Erros Inatos do Metabolismo: Revisão de Literatura. Rev Para Med 20:41–45 Engers VK, Behling CS, Frizzo MN (2011) A influência do estresse oxidativo no processo de envelhecimento celular. Rev Context e Saúde 10:93–102 Ferreira ALA, Matsubara LS (1997) Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Assoc Med Bras 43:61–68. https://doi.org/10.1590/S0104-42301997000100014 Gedik E, Girgin S, Ozturk H, Obay BD, Ozturk H, Buyukbayram H (2008) Resveratrol attenuates oxidative stress and histological alterations induced by liver ischemia/reperfusion in rats. World J Gastroenterol 14:7101–7106. https://doi.org/10.3748/wjg.14.7101 Herrera Sanchez MB, Previdi S, Bruno S, Fonsato V, Deregibus MC, Kholia S, Petrillo S, Tolosano E, Critelli R, Spada M, Romagnoli R, Salizzoni M, Tetta C, Camussi G (2017) Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency. Stem Cell Res Ther 8:1–15. https://doi.org/10.1186/s13287-017-0628-9 Hussein MA (2011) A convenient mechanism for the free radical scavenging activity of resveratrol. Int J Phytomedicine 3:459–469 Kahl R (1991) Protective and adverse biological action of phenolic antioxidants. In: Sies H (ed) Oxidative stress: oxidants and antioxidants. Academic Press, San Diego, pp 245–273 Kose E, Unal O, Bulbul S, Gunduz M, Häberle J, Arslan N (2017) Identification of three novel mutations in fourteen patients with citrullinemia type 1. Clin Biochem 50:686–689. https://doi.org/10.1016/j.clinbiochem.2017.01.011 Kosenko E, Kaminski Y, Kaminski A et al (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 27:637–644 Lowry OH, Rosebrough NJ, Lewis AF, Randall RJ (1951) Protein Measurement with the folin phenol reagent. Jour of Biolog Chem 193(1):265–275 Marklund S (1985) Handbook of methods for oxygen radical research., 3a. CRC press, Boca Raton Ministério da Ciência, Tecnologia e Inovação. Legislações do CONCEA (2008). Brasil. http://www.mctic.gov.br/mctic/opencms/institucional/concea/paginas/legislacao.html Mokni M, Elkahoui S, Limam F, Amri M, Aouani E (2007) Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 32:981–987. https://doi.org/10.1007/s11064-006-9255-z Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 Prestes CC, Sgaravatti AM, Pederzolli CD, Sgarbi MB, Zorzi GK, Wannmacher CMD, Wajner M, Wyse ATS, Dutra-Filho CS (2006) Citrulline and ammonia accumulating in citrullinemia reduces antioxidant capacity of rat brain in vitro. Metab Brain Dis 21:63–74. https://doi.org/10.1007/s11011-006-9005-6 Raimann E, Cornejo V, Mellibosky D et al (1994) Citrulinemia - Casos Clínicos. Rev Chil Pediatr 65:215–218 Revuelta M, Arteaga O, Montalvo H, Alvarez A, Hilario E, Martinez-Ibargüen A (2016) Antioxidant treatments recover the alteration of auditory-evoked potentials and reduce morphological damage in the inferior colliculus after perinatal asphyxia in rat. Brain Pathol 26:186–198 Rice-Evans CA, Miller NJ, Bolwell PG et al (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383 Ruder J, Legacy J, Russo G, Davis R (2014) Neonatal citrullinemia: novel, reversible neuroimaging findings correlated with ammonia level changes. Pediatr Neurol 51:553–556. https://doi.org/10.1016/j.pediatrneurol.2014.07.010 Silva WJM, Ferrari CKB (2011) Metabolismo mitocondrial, radicais livres e envelhecimento. Rev Bras Geriatr e Gerontol 14:441–451. https://doi.org/10.1590/S1809-98232011000300005 Soleas GJ, Diamandis EP, Goldberg DM (1997) Resveratrol: a molecule whose time has come? And gone? Clin Biochem 30:91–113. https://doi.org/10.1016/S0009-9120(96)00155-5 Su H-C, Hung L-M, Chen J-K (2006) Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Metab 290:E1339–E1346. https://doi.org/10.1152/ajpendo.00487.2005 Travacio M, Llesuy S (1996) Antioxidant enzymes and their modification under oxidative stress conditions. Free Radic Res Lati Am 48:9–13 Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333 Guide For The Care and Use of Laboratory Animals, (2011) 8a. The Nacional Academies Press, Washington, DC