Journal of Turbomachinery

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
Journal of Turbomachinery - Tập 122 Số 3 - Trang 553-557 - 2000
C. A. Hale, Michael W. Plesniak, S. Ramadhyani

The adiabatic, steady-state liquid crystal technique was used to measure surface adiabatic film cooling effectiveness values in the near-hole region X/D<10. A parametric study was conducted for a single row of short holes L/D⩽3 fed by a narrow plenum H/D=1. Film cooling effectiveness values are presented and compared for various L/D ratios (0.66 to 3.0), three different blowing ratios (0.5, 1.0, and 1.5), two different plenum feed configurations (co-flow and counterflow), and two different injection angles (35 and 90 deg). Injection hole geometry and plenum feed direction were found to affect short hole film cooling performance significantly. Under certain conditions, similar or improved coverage was achieved with 90 deg holes compared with 35 deg holes. This result has important implications for manufacturing of thin-walled film-cooled blades or vanes. [S0889-504X(00)00603-6]

Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
Journal of Turbomachinery - Tập 120 Số 1 - Trang 92-99 - 1998
David R. H. Gillespie, Zifan Wang, Peter Ireland, Stefan Köhler

Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems, which rely on plate inserts. In this paper, it is shown that the surface that forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate, are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer have been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.

Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
Journal of Turbomachinery - Tập 119 Số 2 - Trang 352-358 - 1997
Atul Kohli, David G. Bogard

The film cooling performance and velocity field were investigated for discrete round holes inclined at an injection angle of 55 deg. Results are compared to typical round film cooling holes, with an injection angle of 35 deg. All experiments in this study were performed at a density ratio of DR = 1.6, using cryogenic cooling of the injected air. Centerline and lateral distributions of effectiveness were obtained for a range of momentum flux ratios. Thermal field and two component mean velocity and turbulence intensity measurements were made at a momentum flux ratio that was within the range of maximum spatially averaged effectiveness. Compared to round holes with 35 deg injection angle, the 55 deg holes showed only a slight degradation in centerline effectiveness for low momentum flux ratios, while a significant reduction in effectiveness was seen at high momentum flux ratios. The thermal field for the 55 deg round holes indicated a faster decay of cooling capacity for the 55 deg round holes. The high turbulence levels for the 55 deg round hole coincided with the sharp velocity gradients between the jet and free stream, and the decay of turbulence levels with downstream distance was found to be similar to those for a 35 deg hole.

Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
Journal of Turbomachinery - Tập 130 Số 4 - 2008
Hyung Hee Cho, Dong Ho Rhee, R. J. Goldstein

The present study investigates the local heat (mass) transfer characteristics of flow through perforated plates. Two parallel perforated plates were placed, relative to each other, in either staggered, in line, or shifted in one direction. Hole length to diameter ratio of 1.5, hole pitch to diameter ratio of 3.0, and distance between the perforated plates of 1–3 hole diameters are used at hole Reynolds numbers of 3000 to 14,000. For flows through the staggered layers and the layers shifted in one direction, the mass transfer rates on the surface of the effusion plate increase approximately 50% from impingement cooling alone and are about three to four times that with effusion cooling alone (single layer). The high transfer rate is induced by strong secondary vortices formed between two adjacent impinging jets and flow transition so that heat/mass transfer coefficient in the midway region is as high as stagnation heat/mass transfer coefficient. The mass transfer coefficient for the in-line arrangement is approximately 100% higher on the target surface than that of the single layer case. In overall, the staggered hole arrangement shows better performance than other cases.

Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
Journal of Turbomachinery - Tập 112 Số 3 - Trang 467-476 - 1990
Amer M. Al Dabagh, Gordon E. Andrews, R. A. A. Abdul Husain, C. I. Husain, Ahmad Nazari, Jiafeng Wu

Measurements of the overall heat transfer coefficient within an impingement/effusion cooled wall are presented. The FLUENT CFD computer code has been applied to the internal aerodynamics to demonstrate the importance of internal recirculation in the impingement gap. This generates a convective heat transfer to the impingement jet. Measurements of this heat transfer plate coefficient are presented that show it to be approximately half of the impingement/effusion heat transfer coefficient. The influence of the relative pressure loss or X/D between the impingement and effusion walls was investigated, for an effusion X/D of 4.67 and a Z of 8 mm, and shown to be only significant at high G where a reduction in h of 20 percent occurred. Increasing the number of holes N in the impingement/effusion array at a constant Z of 8 mm reduced h by 20 percent, mainly due to the higher Z/D for the smaller holes at high N. Reduced numbers of impingement holes relative to the effusion holes, in a ratio of 1 to 4, were shown to have a small influence on h with a maximum reduction in h of 20 percent at high G and a negligible effect at low G.

Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
Journal of Turbomachinery - Tập 114 Số 4 - Trang 872-880 - 1992
J. C. Han, Y. M. Zhang, C. P. Lee

The effect of wall heat flux ratio on the local heat transfer augmentation in a square channel with two opposite in-line ribbed walls was investigated for Reynolds numbers from 15,000 to 80,000. The square channel composed of ten isolated copper sections has a length-to-hydraulic diameter ratio (L/D) of 20. The rib height-to-hydraulic diameter ratio (e/D) is 0.0625 and the rib pitch-to-height ratio (P/e) equals 10. Six ribbed side to smooth side wall heat flux ratios (Case 1—q″r1/q″s = q″r2/q″s = 1; Case 2—q″r1/q″s = q″r2/q″s = 3; Case 3—q″r1/q″s = q″r2/q″s = 6; Case 4—q″r1/q″s = 6 and q″r2/q″s = 4; Case 5—q″r1/q″s = q″r2/q″s = ∞; Case 6—q″r1/q″s = ∞ and q″r2/q″s = 0) were studied for four rib orientations (90 deg rib, 60 deg parallel rib, 60 deg crossed rib, and 60 deg V-shaped rib). The results show that the ribbed side wall heat transfer augmentation increases with increasing ribbed side to smooth side wall heat flux ratios, but the reverse is true for the smooth side wall heat transfer augmentation. The average heat transfer augmentation of the ribbed side and smooth side wall decreases slightly with increasing wall heat flux ratios. Two ribbed side wall heating (Case 5—q″r1/q″s = q″r2/q″s = ∞) provides a higher ribbed side wall heat transfer augmentation than the four-wall uniform heating (Case 1—q″r1/q″s = q″r2/q″s = 1). The effect of wall heat flux ratio reduces with increasing Reynolds numbers. The results also indicate that the 60 deg V-shaped rib and 60 deg parallel rib perform better than the 60 deg crossed rib and 90 deg rib, regardless of wall heat flux ratio and Reynolds number.

An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
Journal of Turbomachinery - Tập 122 Số 1 - Trang 170-177 - 2000
Patrick C. Sweeney, James F. Rhodes

An experimental approach is used to evaluate turbine airfoil cooling designs for advanced gas turbine engine applications by incorporating double-wall film-cooled design features into large-scale flat plate specimens. An infrared (IR) imaging system is used to make detailed, two-dimensional steady-state measurements of flat plate surface temperature with spatial resolution on the order of 0.4 mm. The technique employs a cooled zinc selenide window transparent to infrared radiation and calibrates the IR temperature readings to reference thermocouples embedded in each specimen, yielding a surface temperature measurement accuracy of ±4°C. With minimal thermocouple installation required, the flat plate/IR approach is cost effective, essentially nonintrusive, and produces abundant results quickly. Design concepts can proceed from art to part to data in a manner consistent with aggressive development schedules. The infrared technique is demonstrated here by considering the effect of film hole injection angle for a staggered array of film cooling holes integrated with a highly effective internal cooling pattern. Heated free stream air and room temperature cooling air are used to produce a nominal temperature ratio of 2 over a range of blowing ratios from 0.7 to 1.5. Results were obtained at hole angles of 90 and 30 deg for two different hole spacings and are presented in terms of overall cooling effectiveness. [S0889-504X(00)01901-2]

AN EXPERIMENTALLY VALIDATED LOW ORDER MODEL OF THE THERMAL RESPONSE OF DOUBLE-WALL EFFUSION COOLING SYSTEMS FOR HP TURBINE BLADES
Journal of Turbomachinery - - Trang 1-13
Alexander V. Murray, Peter Ireland, Eduardo Romero
Abstract

Transpiration cooling represents the pinnacle of turbine cooling and is characterised by an intrinsic porosity achieving high internal convective cooling, and full coverage film cooling. The quasi-transpiration, double-wall effusion system attempts to replicate the cooling effect of transpiration cooling. The system is characterised by a large wetted area providing high internal convective cooling performance, with a highly porous external wall allowing the formation of a protective cooling film. This paper presents a low-order thermal model of a double-wall system designed to rapidly ascertain cooling performance based solely on the geometry, thermal conductivity, and approximate surface heat transfer coefficients. Initially validation uses experimental data with heat transfer coefficients for the low order model obtained from fully conjugate CFD simulations. A more controlled CFD study is then undertaken with both fully conjugate and fluid only simulations performed on several double-wall geometries to ascertain both overall and film effectiveness data. Data from these simulations are used as inputs to the low order thermal model and the results compared. The low order model successfully captures both the trends and absolute cooling effectiveness achieved by the various double-wall geometries. The model therefore provides a powerful tool whereby the cooling performance of double-wall geometries can be near instantaneously predicted during the initial design stage, potentially allowing geometry optimisation to rapidly occur prior to more in-depth, costly and time-consuming analyses. This benefit is demonstrated via the implementation of the model with input boundary conditions obtained using empirical correlations.

Overall Effectiveness and Flowfield Measurements for an Endwall With Nonaxisymmetric Contouring
Journal of Turbomachinery - Tập 138 Số 3 - 2016
Amy Mensch, Karen A. Thole

Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer, along with solid conduction, determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the nondimensional external surface temperature, known as overall effectiveness, of an endwall with nonaxisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the effectiveness of impingement alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and the contoured endwalls. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.

A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
Journal of Turbomachinery - Tập 130 Số 3 - 2008
Will F. Colban, Karen A. Thole, M. Haendler

Fan-shaped film-cooling holes have been shown to provide superior cooling performance to cylindrical holes along flat plates and turbine airfoils over a large range of different conditions. Benefits of fan-shaped holes include less required cooling air for the same performance, increased part lifetime, and fewer required holes. The major drawback, however, is increased manufacturing cost and manufacturing difficulty, particularly for the vane platform region. To this point, there have only been extremely limited comparisons between cylindrical and shaped holes on a turbine endwall at either low or high freestream turbulence conditions. This study presents film-cooling effectiveness measurements on an endwall surface in a large-scale, low-speed, two-passage, linear vane cascade. Results showed that film-cooling effectiveness decreased with increasing blowing rate for the cylindrical holes, indicating jet liftoff. However, the fan-shaped passage showed increased film-cooling effectiveness with increasing blowing ratio. Overall, fan-shaped holes increased film-cooling effectiveness by an average of 75% over cylindrical holes for constant cooling flow.

Tổng số: 58   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6