Journal of Neurophysiology

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Hyperthermic Spreading Depressions in the Immature Rat Hippocampal Slice
Journal of Neurophysiology - Tập 84 Số 3 - Trang 1355-1360 - 2000
Jie Wu, Robert S. Fisher

Febrile seizures are the most common seizure type in children (6 mo to 5 yr). The pathophysiology of febrile seizures is unknown. Current genetic studies show that some febrile seizures result from channelopathies. We have performed electrophysiological experiments in in vitro hippocampal slices to test a novel hypothesis that a disordered regulation of ionic homeostasis underlies the genesis of febrile seizures. In transverse hippocampal CA1 slices from 104 rats, temperature increase from 34° to 40°C produced a series of spreading depressions (SDs), called hyperthermic SDs. The hyperthermic SDs were age-dependent, occurring in only 1/17 8–16 day-old animals, 44/49 17–60 day-old animals, and 11/20 rats older than than 60 days. The hyperthermic SDs usually occurred on the rising phase of the temperature. The mean temperature to trigger a first hyperthermic SD was 38.8 ± 1.3°C (mean ± SD, n = 44). The hyperthermic SDs induced a reversible loss of evoked synaptic potentials and a dramatic decrease of input resistance. Neuronal and field epileptiform bursting occurred in the early phases of the hyperthermic SD. During hyperthermic SDs, pyramidal cell membrane potential depolarized by 38.3 ± 4.9 mV ( n = 20), extracellular field shifted negative 18.5 ± 3.9 mV ( n = 44), and extracellular K+ rose reversibly to 43.8 ± 10.9 mM ( n = 6). Similar SDs could be evoked by ouabain or transient hypoxia with normal temperature. Tetrodotoxin could block initial epileptiform bursting, without blocking SDs. Hyperthermia-induced SDs should be investigated as possible contributing factors to febrile seizures.

Reorganization of the Raccoon Cuneate Nucleus After Peripheral Denervation
Journal of Neurophysiology - Tập 78 Số 6 - Trang 2924-2936 - 1997
D. D. Rasmusson, Stacey A. Northgrave

Rasmusson, Douglas D. and Stacey A. Northgrave. Reorganization of the raccoon cuneate nucleus after peripheral denervation. J. Neurophysiol. 78: 2924–2936, 1997. The effects of peripheral nerve transection on the cuneate nucleus were studied in anesthetized raccoons using extracellular, single-unit recordings. The somatotopic organization of the cuneate nucleus first was examined in intact, control animals. The cuneate nucleus in the raccoon is organized with the digits represented in separate cell clusters. The dorsal cap region of the cuneate nucleus contains a representation of the claws and hairy skin of the digits. Within the representation of the glabrous skin, neurons with rapidly adapting properties tended to be segregated from those with slowly adapting properties. The representations of the distal and proximal pads on a digit also were segregated. Electrical stimulation of two adjacent digits provided a detailed description of the responses originating from the digit that contains the tactile receptive field (the on-focus digit) and from the adjacent (off-focus) digit. Stimulation of the on-focus digit produced a short latency excitation in all 99 neurons tested, with a mean of 10.5 ms. These responses had a low threshold (426 μA). Stimulation of an off-focus digit activated 65% of these neurons. These responses had a significantly longer latency (15.3 ms) than on-focus responses and the threshold was more than twice as large. Two to five months after amputation of digit 4, 97 cells were tested with stimulation of digits 3 and 5. A total of 44 were in the intact regions of the cuneate nucleus. They had small receptive fields on intact digits and their responses to electrical stimulation did not differ from the control neurons. The remaining 53 neurons were judged to be deafferented and in the fourth digit region on the basis of their location with respect to intact neurons. All but two of these cells had receptive fields that were much larger than normal, often including more than one digit and part of the palm. When compared with the off-focus control neurons, their responses to electrical stimulation had lower thresholds and an increased response probability and magnitude. The latencies of these cells did not decrease, however, and were the same as the off-focus control values. The enhanced responses of the deafferented neurons to adjacent digit stimulation indicate that there is a strengthening of synapses that were previously ineffective. The increased proportion of neurons that could be activated after amputation suggests that there is also a growth of new connections. This experiment demonstrates that reorganization in the adult somatotopic system does occur at the level of the dorsal column nuclei. As a consequence, many of the changes reported at the cortex and thalamus may be due to the changes occurring at this first synapse in the somatosensory pathway.

Thalamic state control of cortical paired-pulse dynamics
Journal of Neurophysiology - Tập 117 Số 1 - Trang 163-177 - 2017
Clarissa J. Whitmire, Daniel C. Millard, Garrett B. Stanley

Sensory stimulation drives complex interactions across neural circuits as information is encoded and then transmitted from one brain region to the next. In the highly interconnected thalamocortical circuit, these complex interactions elicit repeatable neural dynamics in response to temporal patterns of stimuli that provide insight into the circuit properties that generated them. Here, using a combination of in vivo voltage-sensitive dye (VSD) imaging of cortex, single-unit recording in thalamus, and optogenetics to manipulate thalamic state in the rodent vibrissa pathway, we probed the thalamocortical circuit with simple temporal patterns of stimuli delivered either to the whiskers on the face (sensory stimulation) or to the thalamus directly via electrical or optogenetic inputs (artificial stimulation). VSD imaging of cortex in response to whisker stimulation revealed classical suppressive dynamics, while artificial stimulation of thalamus produced an additional facilitation dynamic in cortex not observed with sensory stimulation. Thalamic neurons showed enhanced bursting activity in response to artificial stimulation, suggesting that bursting dynamics may underlie the facilitation mechanism we observed in cortex. To test this experimentally, we directly depolarized the thalamus, using optogenetic modulation of the firing activity to shift from a burst to a tonic mode. In the optogenetically depolarized thalamic state, the cortical facilitation dynamic was completely abolished. Together, the results obtained here from simple probes suggest that thalamic state, and ultimately thalamic bursting, may play a key role in shaping more complex stimulus-evoked dynamics in the thalamocortical pathway.

NEW & NOTEWORTHY For the first time, we have been able to utilize optogenetic modulation of thalamic firing modes combined with optical imaging of cortex in the rat vibrissa system to directly test the role of thalamic state in shaping cortical response properties.

Effect of passive eye position changes on retinogeniculate transmission in the cat
Journal of Neurophysiology - Tập 63 Số 3 - Trang 502-522 - 1990
Ratnesh Lal, M. J. Friedlander

1. Extracellular recordings were made from single neurons in layer A of the left dorsal lateral geniculate nucleus (LGNd) of anesthetized and paralyzed adult cats. Responses to retinotopically identical visual stimuli (presented through the right eye) were recorded at several positions of the left eye in its orbit. Visual stimuli consisted of drifting sinusoidal gratings of optimal temporal and spatial frequencies at twice threshold contrast. Visual stimulation of the left eye was blocked by a variety of methods, including intravitreal injection of tetrodotoxin (TTX). The change in position of the left eye was achieved by passive movements in a randomized and interleaved fashion. Of 237 neurons studied, responses were obtained from 143 neurons on 20-100 trials of identical visual stimulation at each of six eye positions. Neurons were classified as X- or Y- on the basis of a standard battery of physiological tests (primarily linearity of spatial summation and response latency to electrical stimulation of the optic chiasm). 2. The effect of eye position on the visual response of the 143 neurons was analyzed with respect to the number of action potentials elicited and the peak firing rate. Fifty-seven (40%) neurons had a significant effect [by one-factor repeated-measure analysis of variance (ANOVA), P less than 0.05] of eye position on the visual response by either criterion (number of action potentials or peak firing rate). Of these 57 neurons, 47 had a significant effect (P less than 0.05) with respect to the number of action potentials and 23 had a significant effect (P less than 0.05) by both criteria. Thus the permissive measure by either criterion and the conservative measure by both criteria resulted in 40% and 16%, respectively, of all neurons' visual responses being significantly affected by eye position. 3. For the 47 neurons with a significant effect of eye position (number of action potentials criterion), a trend analysis of eye position versus visual response showed a linear trend (P less than 0.05) for 9 neurons, a quadratic trend (P less than 0.05) for 32 neurons, and no significant trend for the 6 remaining neurons. The trends were approximated with linear and nonlinear gain fields (range of eye position change over which the visual response was modulated). The gain fields of individual neurons were compared by measuring the normalized gain (change in neuronal response per degree change of eye position). The mean normalized gain for the 47 neurons was 4.3. 4. The nonlinear gain fields were generally symmetric with respect to nasal versus temporal changes in eye position.(ABSTRACT TRUNCATED AT 400 WORDS)

Somatosensory Input to Auditory Association Cortex in the Macaque Monkey
Journal of Neurophysiology - Tập 85 Số 3 - Trang 1322-1327 - 2001
Charles E. Schroeder, Robert W. Lindsley, Colleen M. Specht, Alvin Marcovici, John F. Smiley, Daniel C. Javitt

We investigated the convergence of somatosensory and auditory inputs in within subregions of macaque auditory cortex. Laminar current source density and multiunit activity profiles were sampled with linear array multielectrodes during penetrations of the posterior superior temporal plane in three macaque monkeys. At each recording site, auditory responses to binaural clicks, pure tones, and band-passed noise, all presented by earphones, were compared with somatosensory responses evoked by contralateral median nerve stimulation. Subjects were awake but were not required to discriminate the stimuli. Borders between A1 and surrounding belt regions were identified by mapping best frequency and stimulus preferences and by subsequent histological analysis. Regions immediately caudomedial to A1 had robust somatosensory responses co-represented with auditory responses. In these regions, both somatosensory and auditory response profiles had “feedforward” patterns; initial excitation beginning in Lamina 4 and spreading to extragranular laminae. Auditory and somatosensory responses displayed a high degree of temporal overlap. Anatomical reconstruction indicated that the somatosensory input region includes, but may not be restricted to, the caudomedial auditory association cortex. As was earlier reported for this region, auditory frequency tuning curves were broad and band-passed noise responses were larger than pure tone responses. No somatosensory responses were observed in A1. These findings suggest a potential neural substrate for multisensory integration at an early stage of auditory cortical processing.

Impact of unilateral and bilateral impairments on bimanual force production following stroke
Journal of Neurophysiology - Tập 130 Số 3 - Trang 608-618 - 2023
Hien Nguyen, Thanh Quoc Phan, Reza Shadmehr, Sang Wook Lee

We studied how unilateral and bilateral impairments in stroke survivors affect their bimanual task performance. Unilateral impairments of the more-impaired limb, both weakness and loss of directional control, mainly contribute to bimanual asymmetry, but stroke survivors generally produce higher force with their more-impaired limb than their relative capacity. Bilateral force coordination was significantly impaired in stroke survivors, but its degree of impairment was not related to their unilateral impairments.

Influence of Predictive Information on Responses of Tonically Active Neurons in the Monkey Striatum
Journal of Neurophysiology - Tập 80 Số 6 - Trang 3341-3344 - 1998
Paul Apicella, Sabrina Ravel, Pierangelo Sardo, Eric Legallet

Apicella, Paul, Sabrina Ravel, Pierangelo Sardo, and Eric Legallet. Influence of predictive information on responses of tonically active neurons in the monkey striatum. J. Neurophysiol. 80: 3341–3344, 1998. We investigated how the expectation of a signal of behavioral significance influences the activity of tonically active neurons in the striatum of two monkeys performing a simple reaction time task under two conditions, an uncued condition in which the trigger stimulus occurred randomly in time and a cued condition in which the same trigger was preceded by an instruction stimulus serving as a predictive signal for the forthcoming signal eliciting an immediate behavioral reaction. Both monkeys benefited from the presence of the instruction stimulus to reduce their reaction time, suggesting an increased ability to predict the trigger onset during cued trials compared with uncued trials. A majority of neurons (199/272, 73%) showed a phasic reduction in activity after the onset of the trigger stimulus in the uncued condition, whereas only 38% responded to the same stimulus when it was preceded by the instruction. Furthermore, magnitudes of trigger responses in the uncued condition were significantly higher than in the cued condition. Fifty-seven percent of the neurons responded to the instruction stimulus, and one-half of the neurons losing their response to the trigger in the cued condition responded to the instruction stimulus. These findings suggest that responses of tonic striatal neurons to a trigger stimulus for movement were influenced by predictive information.

Intravenous Morphine Increases Release of Nitric Oxide From Spinal Cord by an α-Adrenergic and Cholinergic Mechanism
Journal of Neurophysiology - Tập 78 Số 4 - Trang 2072-2078 - 1997
Zemin Xu, Chuanyao Tong, Hui‐Lin Pan, S. Cerda, James C. Eisenach

Xu, Zemin, Chuanyao Tong, Hui-Lin Pan, Sergio E. Cerda, and James C. Eisenach. Intravenous morphine increases release of nitric oxide from spinal cord by an α-adrenergic and cholinergic mechanism. J. Neurophysiol. 78: 2072–2078, 1997. Systemic opioids produce analgesia in part by activating bulbospinal noradrenergic pathways. Spinally released norepinephrine (NE) has been suggested to produce analgesia in part by stimulating α2-adrenoceptors on cholinergic spinal interneurons to release acetylcholine (ACh). We hypothesized that this spinally released ACh would stimulate synthesis of nitric oxide (NO), and that spinally released NO after intravenous (IV) opioid injection thus would depend on a cascade of noradrenergic and cholinergic receptor stimulation. To test these hypotheses, IV morphine was administered to anesthetized sheep, and neurotransmitters in dorsal horn interstitial fluid were measured by microdialysis. IV morphine increased NE and ACh in dorsal horn microdialysates, and these increases were inhibited by IV naloxone or cervical spinal cord transection. IV morphine also increased dorsal horn microdialysate concentrations of nitrite, a stable metabolite of NO. Increases in NE, ACh, and nitrite were antagonized by prior intrathecal injection of the α2-adrenergic antagonist idazoxan, the muscarinic antagonist atropine, or the NO synthase inhibitor N-methyl-l-arginine (NMLA). To examine the concentration-dependent effects of spinal adrenergic stimulation, isolated rat spinal cord tissue was perfused with the α2-adrenergic agonist clonidine. Clonidine increased nitrite in the spinal cord tissue perfusate, an effect blocked by coadministration of idazoxan, atropine, and NMLA. These data support a previously hypothesized cascade of spinally released NE and ACh after systemic opioid administration. These data also suggest that spinally released NO plays a role in the analgesic effects of systemic opioids. In addition, these data imply a positive feedback whereby spinally released nitric oxide increases NE release and that has not previously been described.

Differential Modulation by Nicotine of Substantia Nigra Versus Ventral Tegmental Area Dopamine Neurons
Journal of Neurophysiology - Tập 98 Số 6 - Trang 3388-3396 - 2007
J. Russel Keath, Michael P. Iacoviello, Lindy E. Barrett, Huibert D. Mansvelder, Daniel S. McGehee

Midbrain dopamine (DA) neurons are found in two nuclei, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). The SNc dopaminergic projections to the dorsal striatum are involved in voluntary movement and habit learning, whereas the VTA projections to the ventral striatum contribute to reward and motivation. Nicotine induces profound DA release from VTA dopamine neurons but substantially less from the SNc. Nicotinic acetylcholine receptor (nAChR) expression differs between these nuclei, but it is unknown whether there are differences in nAChR expression on the afferent projections to these nuclei. Here we have compared the nicotinic modulation of excitatory and inhibitory synaptic inputs to VTA and SNc dopamine neurons. Although nicotine enhances both the excitatory and inhibitory drive to SNc DA cells with response magnitudes similar to those seen in the VTA, the prevalence of these responses in SNc is much lower. We also found that a mixture of nAChR subtypes underlies the synaptic modulation in SNc, further distinguishing this nucleus from the VTA, where α7 nAChRs enhance glutamate inputs and non-α7 receptors enhance GABA inputs. Finally, we compared the nicotine sensitivity of DA neurons in these two nuclei and found larger response magnitudes in VTA relative to SNc. Thus the observed differences in nicotine-induced DA release from VTA and SNc are likely due to differences in nAChR expression on the afferent inputs as well as on the DA neurons themselves. This may explain why nicotine has a greater effect on behaviors associated with the VTA than the SNc.

Neural correlates of motion processing through echolocation, source hearing, and vision in blind echolocation experts and sighted echolocation novices
Journal of Neurophysiology - Tập 111 Số 1 - Trang 112-127 - 2014
L. Thaler, Jennifer L. Milne, S. R. Arnott, Daniel Kish, Melvyn A. Goodale

We have shown in previous research (Thaler L, Arnott SR, Goodale MA. PLoS One 6: e20162, 2011) that motion processing through echolocation activates temporal-occipital cortex in blind echolocation experts. Here we investigated how neural substrates of echo-motion are related to neural substrates of auditory source-motion and visual-motion. Three blind echolocation experts and twelve sighted echolocation novices underwent functional MRI scanning while they listened to binaural recordings of moving or stationary echolocation or auditory source sounds located either in left or right space. Sighted participants' brain activity was also measured while they viewed moving or stationary visual stimuli. For each of the three modalities separately (echo, source, vision), we then identified motion-sensitive areas in temporal-occipital cortex and in the planum temporale. We then used a region of interest (ROI) analysis to investigate cross-modal responses, as well as laterality effects. In both sighted novices and blind experts, we found that temporal-occipital source-motion ROIs did not respond to echo-motion, and echo-motion ROIs did not respond to source-motion. This double-dissociation was absent in planum temporale ROIs. Furthermore, temporal-occipital echo-motion ROIs in blind, but not sighted, participants showed evidence for contralateral motion preference. Temporal-occipital source-motion ROIs did not show evidence for contralateral preference in either blind or sighted participants. Our data suggest a functional segregation of processing of auditory source-motion and echo-motion in human temporal-occipital cortex. Furthermore, the data suggest that the echo-motion response in blind experts may represent a reorganization rather than exaggeration of response observed in sighted novices. There is the possibility that this reorganization involves the recruitment of “visual” cortical areas.

Tổng số: 760   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10