Journal of Neurophysiology
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Plaghki, Léon, Dominique Bragard, Daniel Le Bars, Jean-Claude Willer, and Jean-Marie Godfraind. Facilitation of a nociceptive flexion reflex in man by nonnoxious radiant heat produced by a laser. J. Neurophysiol. 79: 2557–2567, 1998. Electromyographic recordings were made in healthy volunteers from the knee-flexor biceps femoris muscle of the nociceptive RIIIreflex elicited by electrical stimulation of the cutaneous sural nerve. The stimulus intensity was adjusted to produce a moderate pricking-pain sensation. The test responses were conditioned by a nonnoxious thermal (≤40°C) stimulus applied to the receptive field of the sural nerve. This stimulus was delivered by a CO2laser stimulator and consisted of a 100-ms pulse of heat with a beam diameter of 20 mm. Its power was 22.7 ± 4.2 W (7.2 mJ/mm2), and it produced a sensation of warmth. The maximum surface temperature reached at the end of the period of stimulation was calculated to be 7°C above the actual reference temperature of the skin (32°C). The interval between the laser (conditioning) and electrical (test) stimuli was varied from 50 to 3,000 ms in steps of 50 ms. It was found that the nociceptive flexion reflex was facilitated by the thermal stimulus; this modulation occurred with particular conditioning-test intervals, which peaked at 500 and 1,100 ms with an additional late, long-lasting phase between 1,600 and 2,300 ms. It was calculated that the conduction velocities of the cutaneous afferent fibers responsible for facilitating the RIIIreflex, fell into three ranges: one corresponding to Aδ fibers (3.2 m/s) and two in the C fiber range (1.3 and 0.7 m/s). It is concluded that information emanating from warm receptors and nociceptors converges. In this respect, the present data show, for the first time, that in man, conditioning nonnociceptive warm thermoreceptive Aδ and C fibers results in an interaction at the spinal level with a nociceptive reflex. This interaction may constitute a useful means whereby signals add together to trigger flexion reflexes in defensive reactions and other basic motor behaviors. It also may contribute to hyperalgesia in inflammatory processes. The methodology used in this study appears to be a useful noninvasive tool for exploring the thermoalgesic mechanisms in both experimental and clinical situations.
Most simple cells in the striate cortex of the cat are direction selective, firing to broadside movement of an optimally oriented edge or bar in one direction of motion and not the other. The smallest stimulus displacement for which a direction-selective discrimination can be made cannot be smaller than the threshold for the detection of the displacement itself. It is shown that retinal image quality is an important limiting factor in respect to the thresholds both for stimulus displacement and direction selectivity.
1. The response properties of 182 units were studied in the primary visual cortices (155 in area 18 and 27 in area 17) in eight cats reared from birth in a stroboscopically illuminated environment (frequency, 2/s; duration, 200 microseconds). Multihistogram quantitative testing was carried out in 82 units (64 in area 18 and 18 in area 17). Two hundred three neurons recorded and quantitatively tested in areas 17 and 18 of the normal adult cat were used for comparison. 2. Spatial characteristics of receptive fields investigated using hand-held stimuli were found to be abnormal. The correlation between receptive-field width and eccentricity was lost in area 18 and consequently, receptive fields were significantly wider in area 18 subserving central vision. Cells could be classified according to the spatial characteristics of their receptive fields. There was a much smaller proportion of end-stopped cells in strobe-reared animals. Orientation tuning in the deprived animals was normal except for a small number of cells that showed no selectivity for stimulus orientation. 3. Compilation of velocity-response curves made it possible to classify areas 17 and 18 neurons into four categories: velocity low-pass, velocity broad-band, velocity tuned, and velocity high-pass cells. The proportion of velocity high-pass cells was reduced in area 18 subserving peripheral vision, as was the proportion of velocity-tuned cells in area 18 subserving central vision. 4. In the strobe-reared animal velocity sensitivity was somewhat different from that of the normal animal. Neurons in area 18 subserving the peripheral visual field failed to respond to fast velocities. Neurons in area 17 subserving the central visual field in strobe-reared animals responded to slightly higher velocities than in the normal animal. 5. In the deprived animals the number of neurons that were selective to the direction of motion was strongly reduced. The majority of neurons failed to show a selectivity for direction at all velocities. A number of neurons could be directional at some velocities but were unreliable, since they inverted their preferred direction with velocity changes. 6. Binocular convergence onto visual cortical cells was perturbed. In area 18 the majority of neurons were driven by the contralateral eye. In area 17 most neurons could be driven only by either the ipsilateral or contralateral eye. 7. Quantitative testing (of direction selectivity, sensitivity to high velocities, response latency, and strength) and qualitative testing (receptive-field width, end stopping, and ocular dominance) showed that the normal influence of eccentricity on functional properties was strongly reduced by strobe rearing.
1. Directionally asymmetric (DA) units respond preferentially to one direction of image movement. If that preferred direction is independent of stimulus contrast then the DA unit is considered directionally selective (DS). We have analyzed receptive-field (RF) properties of striate units with these properties by presenting bar-shaped stimuli that are moved in a stepwise sequence. Short interstimulus durations for certain ranges of step size elicit DA responses similar to those from smooth movement, while still allowing identification of on- and off-components of the response. 2. We have been able to isolate three mechanisms underlying DA and DS. The simplest, superposition, explains the dependence of preferred direction on stimulus contrast found in some DA units. It relies completely on asymmetries in static RF regions to provide an advantage for one direction of image motion by means of the simultaneity of image elements leaving an apparently inhibitory region and entering an excitatory one. 3. For all DA and DS units we have encountered forward inhibition of otherwise excitatory influences that reduces the responsiveness in the antipreferred direction. The spatial specificity of inhibitory target RF regions and the nonlinearity of the effect suggest that lateral inhibition may be transmitted via sequence-detecting subunits. 4. Units that do not show superposition in the preferred direction exhibit forward facilitation of responses in a nonlinear and target-specific way which suggests that facilitation may also be transmitted via sequence-detecting subunits. 5. Each of these mechanisms depends on short-lived influences that are laterally transmitted between 0.125 and 0.5 degrees in visual space. These spatial and temporal values are appropriate for the analysis of smooth movement by the visual system. 6. Stepwise movement sequences using dark bars on a bright background demonstrate for some DA units exactly the same mechanisms as demonstrated using bright-bar sequences in other units or, in the case of DS units, in the same units. In such DS units, which do not normally exhibit strong stationary RF asymmetries, differential sensitivity of the nonlinear DS mechanisms to stimulus elements of either contrast will yield an effective preferred movement direction for complex stimuli.
The response properties of 217 cells recorded from the monocular segment of primary visual cortex in rabbits reared with lid suture of the contralateral eye (monocular deprivation, MD) were studied. These data were compared with 280 cells recorded from normal rabbits. There was no change in the percentage of orientation-selective cells, nonorientation-selective cells, or unmappable/unresponsive cells in MD animals compared with normals. Among orientation selective cells the orientation-tuning range of cells in MD animals was normal, and the predominance of cells with horizontal preferred orientation was maintained. However, some abnormalities were seen in orientation-selective cells of MD animals. These included an increased frequency of SI cells; a change in the distribution of preferred orientations; a disruption of the clustered organization of the cortex; a decrease in direction selectivity; an increase in the percentage of cells preferring slow stimulus movements and having low spontaneous activity; an increase in receptive-field size in all cell classes except SI. Among nonorientation-selective cells there was an increase in the percentage of movement sensitive cells and an increase in receptive-field size in MD animals. It is concluded that the effects of MD are much less severe in rabbit than in cat. In MD rabbits, many cells develop normally. In cells that do not develop normally, many of the changes observed can be interpreted as reflecting deficits in inhibitory functions.
Presynaptic nicotinic acetylcholine receptors (nAChRs) are thought to mediate some of the cognitive and behavioral effects of nicotine. The olfactory projection to the amygdala, and intra-amygdaloid projections, are limbic relays involved in behavioral reinforcement, a property influenced by nicotine. Co-cultures consisting of murine olfactory bulb (OB) explants and dispersed amygdala neurons were developed to reconstruct this pathway in vitro. Whole cell patch-clamp recordings were obtained from amygdala neurons contacted by OB explant neurites, and spontaneous and evoked synaptic currents were characterized. The majority of the 108 innervated amygdala neurons exhibited glutamatergic spontaneous postsynaptic currents (PSCs), 20% exhibited GABAergic spontaneous PSCs, and 17% exhibited both. Direct extracellular stimulation of OB explants elicited glutamatergic synaptic currents in amygdala neurons. Antibodies to nAChR subunits co-localized with an antibody to synapsin I, a presynaptic marker, along OB explant processes, consistent with the targeting of nAChR protein to presynaptic sites of the mitral cell projections. Hence, we examined the role of presynaptic nAChRs in modulating synaptic transmission in the OB–amygdala co-cultures. Focal application of 500 nM to 1 μM nicotine for 5–60 s markedly increased the frequency of spontaneous PSCs, without a change in the amplitude, in 39% of neurons that exhibited glutamatergic spontaneous PSCs (average peak fold increase = 125.2 ± 33.3). Nicotine also enhanced evoked glutamatergic currents elicited by direct stimulation of OB explant fibers. Nicotine increased the frequency of spontaneous PSCs, without a change in the amplitude, in 35% of neurons that exhibited GABAergic spontaneous PSCs (average peak fold increase = 63.9 ± 34.3). Thus activation of presynaptic nAChRs can modulate glutamatergic as well as GABAergic synaptic transmission in the amygdala. These results suggest that behaviors mediated by olfactory projections may be modulated by presynaptic nAChRs in the amygdala, where integration of olfactory and pheromonal input is thought to occur.
The basolateral nucleus of the amygdala (BLA) receives cholinergic innervation from the basal forebrain and nicotine, via activation of neuronal nicotinic acetylcholine receptors (nAChRs), can improve performance in amygdala-based learning tasks. We tested the hypothesis that acute and prenatal nicotine exposure modulates cortico–amygdala synaptic transmission. We found that low-dose, single-trial exposures to nicotine can elicit lasting facilitation, the extent of which is dependent on the level of stimulation of the cortical inputs to the BLA. In addition, sustained facilitation is ablated by prenatal exposure to nicotine. This study examined synaptic transmission in 238 patch-clamp recordings from BLA neurons in acute slice from mouse brain. Pharmacological studies in wild-type and nAChR subunit knock-out mice reveal that activation of presynaptic α7, containing (α7*) and non-α7* nAChRs, facilitates glutamatergic transmission in an activity-dependent manner. Without prior stimulation, application of nicotine elicits modest and transient facilitation of glutamatergic postsynaptic currents (PSCs) in about 40% of BLA neurons. With low-frequency stimulation of cortical inputs nicotine elicits robust facilitation of transmission at about 60% of cortico–BLA synapses and synaptic strength remains elevated at about 40% of these connections for >15 min after nicotine washout. Following paired-pulse stimulation nicotine elicits long-lasting facilitation of glutamatergic transmission at about 70% of cortico–BLA connections. Nicotine reduces the threshold for activation of long-term potentiation of cortico–BLA synapses evoked by patterned stimulation. Prenatal exposure to nicotine reduced subsequent modulatory responses to acute nicotine application.
- 1
- 2
- 3
- 4
- 5
- 6
- 10