Receptive Properties of Mouse Sensory Neurons Innervating Hairy Skin

Journal of Neurophysiology - Tập 78 Số 4 - Trang 1841-1850 - 1997
Martin Koltzenburg1, Cheryl L. Stucky1, Gary R. Lewin2
1Department of Neurology, University of Würzburg, D-97080 Wurzburg; and
2Department of Neurobiochemistry, Max-Planck-Institute for Psychiatry, D-82152 Planegg-Martinsried, Germany

Tóm tắt

Koltzenburg, Martin, Cheryl L. Stucky, and Gary R. Lewin. Receptive properties of mouse sensory neurons innervating hairy skin. J. Neurophysiol. 78: 1841–1850, 1997. Using an in vitro nerve skin preparation and controlled mechanical or thermal stimuli, we analyzed the receptive properties of 277 mechanosensitive single primary afferents with myelinated ( n = 251) or unmyelinated ( n = 26) axons innervating the hairy skin in adult or 2-wk-old mice. Afferents were recorded from small filaments of either sural or saphenous nerves in an outbred mice strain or in the inbred Balb/c strain. On the basis of their receptive properties and conduction velocity, several receptor types could be distinguished. In adult animals (>6 wk old), 54% of the large myelinated fibers (Aβ, n = 83) showed rapidly adapting (RA) discharges to constant force stimuli and probably innervated hair follicles, whereas 46% displayed a slowly adapting (SA) response and probably innervated Merkel cells in touch domes. Among thin myelinated fibers (Aδ, n = 91), 34% were sensitive D hair receptors and 66% were high-threshold mechanoreceptors (AM fibers). Unmyelinated fibers had high mechanical thresholds and nociceptive functions. All receptor types had characteristic stimulus-response functions to suprathreshold force stimuli. Noxious heat stimuli (15-s ramp from 32 to 47°C measured at the corium side of the skin) excited 26% (5 of 19) of AM fibers with a threshold of 42.5 ± 1.4°C (mean ± SE) and an average discharge of 15.8 ± 9.7 action potentials and 41% (7 of 17) C fibers with a mean threshold of 37.6 ± 1.9°C and an average discharge of 22.0 ± 6.0 action potentials. Noxious cold stimuli activated 1 of 10 AM fibers and 3 of 10 C fibers. One of 10 C units responded to both heat and cold stimuli. All types of afferent fibers present in adult mice could readily be recognized in mice at postnatal day 14. However, fibers had reduced conduction velocities and the stimulus-response function to mechanical stimuli was more shallow in all fibers except for the D hairs. In juvenile mice, 22% of RA units also displayed an SA response at high stimulus intensities; these units were termed RA/SA units. We conclude that all types of cutaneous afferent fibers are already committed to their phenotype 2 wk after birth but undergo some maturation over the following weeks. This preparation has great potential for the study of transgenic mice with targeted mutations of genes that code factors that are involved in the specification of sensory neuron phenotypes.

Từ khóa


Tài liệu tham khảo

10.1152/jn.1983.49.1.111

10.1016/S0896-6273(00)80047-1

10.1016/0166-2236(96)10030-8

10.1523/JNEUROSCI.14-03-01422.1994

10.1016/0006-8993(85)90177-5

10.1113/jphysiol.1990.sp018116

10.1016/0006-8993(74)90488-0

10.1152/jn.1969.32.6.1025

10.1016/S0960-9822(95)00127-8

10.1113/jphysiol.1967.sp008390

10.1152/jn.1974.37.6.1373

10.1113/jphysiol.1967.sp008227

10.1152/jn.1968.31.6.833

Casserly I., 1994, J. Anat., 185, 553

10.1152/jn.1984.52.1.74

10.1113/jphysiol.1980.sp013438

10.1113/jphysiol.1987.sp016397

10.1016/0006-8993(83)91041-7

10.1016/0165-0270(90)90155-9

10.1097/00005072-196810000-00002

10.1152/jn.1996.75.3.1177

10.1007/BF00235972

10.1113/jphysiol.1958.sp006002

10.1146/annurev.ne.05.030182.000245

10.1113/jphysiol.1969.sp008721

10.1016/0006-8993(89)91474-1

10.1126/science.7192014

10.1523/JNEUROSCI.14-03-01756.1994

10.1016/0306-4522(92)90066-B

Koltzenburg M., 1995, Soc. Neurosci. Abstr., 21, 1054

Koltzenburg M., 1996, Soc. Neurosci. Abstr., 22, 300.4

10.1152/jn.1992.68.2.581

10.1002/cne.901980112

10.1152/jn.1977.40.6.1325

10.1523/JNEUROSCI.02-06-00765.1982

10.1152/jn.1993.69.5.1684

10.1098/rstb.1996.0035

10.1152/jn.1991.66.4.1218

10.1152/jn.1994.71.3.941

10.1111/j.1460-9568.1996.tb01311.x

10.1523/JNEUROSCI.12-05-01896.1992

10.1523/JNEUROSCI.13-05-02136.1993

10.1016/0006-8993(82)90768-5

10.1016/0304-3940(88)90431-4

10.1016/0006-8993(81)91124-0

10.1679/aohc.51.1

10.1152/jn.1993.70.2.522

10.1016/0165-3806(91)90129-7

10.1016/0304-3940(86)90180-1

10.1038/350500a0

10.1152/jn.1992.68.6.2033

Rohrer H., 1988, Development, 103, 545, 10.1242/dev.103.3.545

10.1016/0014-4886(81)90271-5

10.1007/BF00242018

10.1523/JNEUROSCI.15-01-00333.1995

10.1111/j.1748-1716.1960.tb00176.x

Slugg R. M., 1994, Soc. Neurosci. Abstr., 20, 1570

10.1016/0092-8674(94)90048-5

Stucky C. L., 1996, Soc. Neurosci. Abstr., 22, 396.5

10.1111/j.1748-1716.1974.tb05755.x

Torebjörk H. E., 1987, Brain, 110, 1509, 10.1093/brain/110.6.1509

10.1152/jn.1978.41.1.138

10.1113/jphysiol.1995.sp020622

10.3109/07367228509144564

10.1113/jphysiol.1994.sp020030