Journal of Mammary Gland Biology and Neoplasia
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Orthotopic Implantation Achieves Better Engraftment and Faster Growth Than Subcutaneous Implantation in Breast Cancer Patient-Derived Xenografts
Journal of Mammary Gland Biology and Neoplasia - Tập 25 Số 1 - Trang 27-36 - 2020
Dedication: Clifford W. Welsch
Journal of Mammary Gland Biology and Neoplasia - Tập 1 - Trang 135-136 - 1996
Rat Models of Premalignant Breast Disease
Journal of Mammary Gland Biology and Neoplasia - Tập 5 - Trang 409-420 - 2000
While a number of agents have been shown to induce mammary carcinogenesis in the rat, premalignant stages of the disease have been best characterized in chemically-induced models, specifically those initiated by either 7,12 dimethylbenz[α]anthracene (DMBA)4 or 1-methyl-1-nitrosourea (MNU). In general, it appears that epithelial cells in mammary terminal end buds or terminal ductules are the targets of carcinogenic initiation, and that a series of morphologically identifiable steps are involved in the development of mammary carcinoma. The premalignant steps include ductal hyperplasia of the usual type and carcinoma in situ of the cribriform or comedo type; atypical ductal hyperplasia has not been reported. Thus the histogenesis of lesions occurring in chemically induced mammary carcinogenesis in the rat is similar to that observed in the human; although, the spectrum of lesions observed in the rat is limited. Opportunities to investigate the biological and molecular characteristics of premalignant breast disease in the rat are presented.
Regulation of Casein Messenger RNA during the Development of the Rat Mammary Gland
Journal of Mammary Gland Biology and Neoplasia - Tập 14 - Trang 343-351 - 2009
Casein mRNA was isolated and partially purified from RNA extracts of rat lactating mammary glands and translated in a heterologous cell-free protein synthesizing system derived from wheat germ. Casein mRNA activity was assayed by immunoprecipitation using a specific antiserum prepared against a mixture of the purified rat caseins. Properties of rat casein mRNA were examined using a variety of sizing techniques, including chromatography on Sepharose 4B, sedimentation on sucrose gradients after heat denaturation, and electrophoresis on 2.5% agarose gels in 6 M urea. Casein mRNA activity was found in an 8-16S region after gradient centrifugation with the peak occurring at 10.5 S. In addition, the binding of rat casein mRNA to dT-cellulose was examined. Only 40% of the total casein mRNA activity was selectively retained. A partial purification of casein mRNA was accomplished by a combination of these sizing and affinity chromatography techniques. In the purified preparations casein mRNA activity comprises approximately 90% of the total mRNA activity. Characterization of this material by agarose gel electrophoresis revealed two main bands of RNA at approximately 12 and 16 S, both containing casein mRNA activity. These mRNAs were of the correct size to code for two of the principal rat caseins of approximately 25,000 and 42,000 molecular weights. Casein mRNA and total mRNA activities were then compared in total RNA extracts at various stages of normal mammary gland development in the rat, i.e. during pregnancy, lactation, and involution following weaning. A selective induction of casein mRNA activity compared to total mRNA activity was found to occur during pregnancy and lactation. Moreover, a selective loss of activity was also observed during mammary gland involution. A surprisingly high level of casein mRNA activity was found in RNA extracts from early and midpregnant mammary glands.
Immunopathology of Mastitis: Insights into Disease Recognition and Resolution
Journal of Mammary Gland Biology and Neoplasia - Tập 16 - Trang 291-304 - 2011
Mastitis is an inflammation of the mammary gland commonly caused by bacterial infection. The inflammatory process is a normal and necessary immunological response to invading pathogens. The purpose of host inflammatory responses is to eliminate the source of tissue injury, restore immune homeostasis, and return tissues to normal function. The inflammatory cascade results not only in the escalation of local antimicrobial factors, but also in the increased movement of leukocytes and plasma components from the blood that may cause damage to host tissues. A precarious balance between pro-inflammatory and pro-resolving mechanisms is needed to ensure optimal bacterial clearance and the prompt return to immune homeostasis. Therefore, inflammatory responses must be tightly regulated to avoid bystander damage to the milk synthesizing tissues of the mammary gland. The defense mechanisms of the mammary gland function optimally when invading bacteria are recognized promptly, the initial inflammatory response is adequate to rapidly eliminate the infection, and the mammary gland is returned to normal function quickly without any noticeable clinical symptoms. Suboptimal or dysfunctional mammary gland defenses, however, may contribute to the development of severe acute inflammation or chronic mastitis that adversely affects the quantity and quality of milk. This review will summarize critical mammary gland defense mechanisms that are necessary for immune surveillance and the rapid elimination of mastitis-causing organisms. Situations in which diminished efficiency of innate or adaptive mammary gland immune responses may contribute to disease pathogenesis will also be discussed. A better understanding of the complex interactions between mammary gland defenses and mastitis-causing pathogens should prove useful for the future control of intramammary infections.
Retraction Note to: Roles of MicroRNAs and Other Non-coding RNAs in Breast Cancer Metastasis
Journal of Mammary Gland Biology and Neoplasia - - 2016
Statistical Issues in the Design and Analysis of Gene Expression Microarray Studies of Animal Models
Journal of Mammary Gland Biology and Neoplasia - Tập 8 - Trang 359-374 - 2003
Appropriate statistical design and analysis of gene expression microarray studies is critical in order to draw valid and useful conclusions from expression profiling studies of animal models. In this paper, several aspects of study design are discussed, including the number of animals that need to be studied to ensure sufficiently powered studies, usefulness of replication and pooling, and allocation of samples to arrays. Data preprocessing methods for both cDNA dual-label spotted arrays and Affymetrix-style oligonucleotide arrays are reviewed. High-level analysis strategies are briefly discussed for each of the types of study aims, namely class comparison, class discovery, and class prediction. For class comparison, methods are discussed for identifying genes differentially expressed between classes while guarding against unacceptably high numbers of false positive findings. Various clustering methods are discussed for class discovery aims. Class prediction methods are briefly reviewed, and reference is made to the importance of proper validation of predictors.
Protein Expression of PI3K/AKT/mTOR Pathway Targets Validated by Gene Expression and its Correlation with Prognosis in Canine Mammary Cancer
Journal of Mammary Gland Biology and Neoplasia - Tập 27 - Trang 241-252 - 2022
Mammary cancer is the main type of neoplasia in female dogs and is considered an adequate model for the biological and therapeutic study of cancer in women. The PIK3CA/AKT/mTOR pathway plays a central role in cellular homeostasis and is often dysregulated in cancer. The increased expression of PI3K protein in the literature is associated with a poor prognosis, and alterations in the PIK3CA gene can lead to changes in downstream pathways. Thus, the objective of this study was to validate the protein expression to confirm the gene expression of proteins belonging to the main pathway PI3K and PTEN, and their downstream pathways through ZEB1, ZEB2, HIF1A, VHL, CASP3 and PARP1 relating to prognosis in canine mammary cancer. For protein studies, the samples came from 58 female dogs with mammary neoplasia, immunohistochemistry was performed and its analysis by the histoscore method. For the genetic evaluation, the samples came from 13 patients, the DNA was extracted and the analysis for quantitative expression. Through immunohistochemistry, PI3K positivity was significantly associated with affected regional lymph node, distant metastasis, patients with HER2+, Triple Negative and Luminal B phenotypes, and the lowest survival rates. Through gene expression, we observed higher gene expression of ZEB2 and PARP1 both among patients who were alive and who died, which was not true for the expressions of PIK3CA and HIF1A. In conclusion, the data observed in this work are promising in the study of new molecular prognostic markers such as PI3K, ZEB2 and PARP1 for canine mammary cancer.
Multifaceted Roles of Integrins in Breast Cancer Metastasis
Journal of Mammary Gland Biology and Neoplasia - Tập 12 - Trang 135-142 - 2007
Malignant breast cancer can be a debilitating disease due to metastasis to tissues such as brain or bone. The metastatic process involves the invasion of tumor cells into the adjacent tissue, followed by systemic dissemination and colonization of secondary organs. These processes require interactions between tumor cells and a changing microenvironment, which drive cell proliferation, migration, invasion and colonization, as well as promoting cell survival. The integrin family of cell adhesion receptors has been shown to play a critical role in all of these processes, consistent with their extracellular matrix binding properties. Experiments in cultured epithelial cells and in vivo models have demonstrated that integrins can promote various stages of metastasis by modulating the effects of growth factor receptors, extracellular proteases and chemotactic molecules. Integrins may therefore play a pivotal role in multiple mechanisms of metastasis. As a result, they represent promising targets for effective treatment of metastatic breast cancer.
Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer
Journal of Mammary Gland Biology and Neoplasia - - 2010
Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit.
Tổng số: 631
- 1
- 2
- 3
- 4
- 5
- 6
- 10