ERBB Receptors and Their Ligands in the Developing Mammary Glands of Different Species: Fifteen Characters in Search of an Author

Alessia Morato1, Paolo Accornero2, Russell C. Hovey1
1Department of Animal Science, University of California, Davis, Davis, USA
2Department of Veterinary Science, University of Turin, Grugliasco, Italy

Tóm tắt

AbstractThe ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.

Từ khóa


Tài liệu tham khảo

Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A 2007;104:5455–60. https://doi.org/10.1073/pnas.0611647104

Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 1998;95:5076–81. https://doi.org/10.1073/PNAS.95.9.5076

Hovey RC, Mcfadden TB, Akers RM. Regulation of Mammary Gland Growth and Morphogenesis by the Mammary Fat Pad: A Species Comparison. vol. 4. 1999.

Horigan KC, Trott JF, Barndollar AS, Scudder JM, Blauwiekel RM, Hovey RC. Hormone interactions confer specific proliferative and histomorphogenic responses in the porcine mammary gland. Domest Anim Endocrinol 2009;37:124–38. https://doi.org/10.1016/j.domaniend.2009.04.002

Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 1992;23:2–218.

Santos M, Marcos R, Faustino AMR. Histological study of canine mammary gland during the oestrous cycle. Reprod Domest Anim 2010;45. https://doi.org/10.1111/J.1439-0531.2009.01536.X

Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 2002;7:17–38. https://doi.org/10.1023/a:1015766322258

Brisken C, Ataca D. Endocrine hormones and local signals during the development. Wiley Interdiscip Rev Dev Biol 2015;4:181–95. https://doi.org/10.1002/wdev.172

Schroeder JA, Lee DC. Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 1998;9:451–64.

Sternlicht MD, Sunnarborg SW. The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia 2008;13:181–94. https://doi.org/10.1007/s10911-008-9084-6

Muraoka-Cook RS, Feng SM, Strunk KE, Earp SH. ErbB4/HER4: role in mammary gland development, differentiation and growth inhibition. J Mammary Gland Biol Neoplasia 2008;13:235–46. https://doi.org/10.1007/s10911-008-9080-x

Rowson AR, Daniels KM, Ellis SE, Hovey RC. Growth and development of the mammary glands of livestock: a veritable barnyard of opportunities. Semin Cell Dev Biol 2012;23:557–66. https://doi.org/10.1016/j.semcdb.2012.03.018

Wang Z. ErbB receptors and cancer. Methods Mol. Biol., vol. 1652, Humana Press Inc.; 2017, p. 3–35. https://doi.org/10.1007/978-1-4939-7219-7_1

Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in developmnet and cancer. EMBO J 2000;19:3159–67. https://doi.org/10.1093/emboj/19.13.3159

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–37. https://doi.org/10.1038/35052073

Cohen S, Ushiro H, Stoscheck C, Chinkers M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 1982;257:1523–31. https://doi.org/10.1016/S0021-9258(19)68224-4

Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984;309:418–25. https://doi.org/10.1038/309418a0

Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, Blundell T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta 1987;916:220–6. https://doi.org/10.1016/0167-4838(87)90112-9

Lax I, Johnson A, Howk R, Sap J, Bellot F, Winkler M, et al. Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha. Mol Cell Biol 1988;8:1970–8. https://doi.org/10.1128/mcb.8.5.1970

Ward CW, Hoyne PA, Flegg RH. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins Struct Funct Bioinforma 1995;22:141–53. https://doi.org/10.1002/prot.340220207

Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001;3:802–8. https://doi.org/10.1038/ncb0901-802

Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmona MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 2010;107:7692–7. https://doi.org/10.1073/pnas.1002753107

Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 2006;127:185–97. https://doi.org/10.1016/J.CELL.2006.07.037

Schechter Y, Hernaez L, Schlessingert J, Cuatrecasas P. Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature 1979;278:835–8. https://doi.org/10.1038/278835a0

Yarden Y, Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 1987;26:1443–51. https://doi.org/10.1021/bi00379a035

Ferguson KM, Darling PJ, Mohan MJ, Macatee TL, Lemmon MA. Extracellular domains drive homo- but not hetero- dimerization of erbB receptors. EMBO J 2000;19:4632–43. https://doi.org/10.1093/emboj/19.17.4632

Berger MB, Mendrola JM, Lemmon MA. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett 2004;569:332–6. https://doi.org/10.1016/j.febslet.2004.06.014

Wehrman TS, Raab WJ, Casipit CL, Doyonnas R, Pomerantz JH, Blau HM. A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions. Proc Natl Acad Sci U S A 2006;103:19063–8. https://doi.org/10.1073/pnas.0605218103

Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 2003;284:54–65. https://doi.org/10.1016/S0014-4827(02)00101-5

Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D. Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis. Distribution of homo- and heterodimers depends on relative HER2 levels. J Biol Chem 2003;278:23343–51. https://doi.org/10.1074/jbc.M300477200

Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100:8933–8. https://doi.org/10.1073/pnas.1537685100

Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 2014;79:34–74. https://doi.org/10.1016/j.phrs.2013.11.002

Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese Ii DJ. Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 2008;122:1–8. https://doi.org/10.1016/j.pharmthera.2008.11.008

Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett 1999;447:227–31. https://doi.org/10.1016/S0014-5793(99)00283-5

Harris AL, Nicholson S, Richard J, Sainsbury C, Farndon J, Wright C. Epidermal growth factor receptors in breast cancer: Association with early relapse and death, poor response to hormones and interactions with neu. J Steroid Biochem 1989;34:123–31. https://doi.org/10.1016/0022-4731(89)90072-1

Gullick WJ. The type 1 growth factor receptors and their ligands considered as a complex system. Endocr Relat Cancer 2001;8:75–82. https://doi.org/10.1677/erc.0.0080075

Nagata K, Kohda D, Hatanaka H, Ichikawa S, Matsuda S, Yamamoto T, et al. Solution structure of the epidermal growth factor-like domain of heregulin-alpha, a ligand for p180erbB-4. EMBO J 1994;13:3517–23. https://doi.org/10.1002/j.1460-2075.1994.tb06658.x

Jacobsen NE, Abadi N, Sliwkowski MX, Reilly D, Skelton NJ, Fairbrother WJ. High-resolution solution structure of the EGF-like domain of heregulin-α. Biochemistry 1996;35:3402–17. https://doi.org/10.1021/bi952626l

Hinkle CL, Sunnarborg SW, Loiselle D, Parker CE, Stevenson M, Russell WE, et al. Selective roles for tumor necrosis factor α-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 2004;279:24179–88. https://doi.org/10.1074/JBC.M312141200

Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 2004;164:769–79. https://doi.org/10.1083/JCB.200307137

Dong J, Opresko LK, Chrisler W, Orr G, Quesenberry RD, Lauffenburger DA, et al. The membrane-anchoring domain of epidermal growth factor receptor ligands dictates their ability to operate in Juxtacrine Mode. Mol Biol Cell 2005;16:2984–98. https://doi.org/10.1091/mbc.E04

Edery M, Pang K, Larson L, Colosi T, Nandi S. Epidermal growth factor receptor levels in mouse mammary glands in various physiological states. Endocrinology 1985;117:405–11. https://doi.org/10.1210/endo-117-1-405

Sebastian J, Richards RG, Walker MP, Wiesen JF, Werb Z, Derynck R, et al. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ 1998;9:777–85.

Yang Y, Spitzer E, Meyer D, Sachs M, Niemann C, Hartmann G, et al. Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J Cell Biol 1995;131:215–26. https://doi.org/10.1083/jcb.131.1.215

Coleman S, Silberstein GB, Daniel CW. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol 1988;127:304–15. https://doi.org/10.1016/0012-1606(88)90317-X

Sternlicht MD, Sunnarborg SW, Kouros-mehr H, Yu Y, Lee DC, Werb Z, et al. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 2006;132:3923–33. https://doi.org/10.1242/dev.02314

Herrington EE, Ram TG, Salomon DS, Johnson GR, Gullick W, Kenney N. Expression of epidermal growth factor-related proteins in the aged adult mouse mammary gland and their relationship to tumorigenesis. J Cell Physiol 1997;170:47–56. https://doi.org/10.1002/(sici)1097-4652(199701)170:1%3C47::aid-jcp6%3E3.0.co;2-l.

Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 1999;126:2739–50.

Williams MM, Vaught DB, Joly MM, Hicks DJ, Sanchez V, Owens P, et al. ErbB3 drives mammary epithelial survival and differentiation during pregnancy and lactation. Breast Cancer Res 2017;19:105. https://doi.org/10.1186/s13058-017-0893-7

Long W, Wagner K-U, Lloyd KCK, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development 2003;130:5257–68. https://doi.org/10.1242/dev.00715

Jones FE, Stern DF. Expression of dominant-negative ErbB2 in the mammary gland of transgenic mice reveals a role in lobuloalveolar development and lactation. Oncogene 1999;18:3481–90. https://doi.org/10.1038/sj.onc.1202698

Jones FE, Welte T, Fu X, Stern DF. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol 1999;147:77–87. https://doi.org/10.1083/jcb.147.1.77

Lin CQ, Dempsey PJ, Coffey RJ, Bissell MJ. Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-α in mouse mammary epithelial cells: studies in culture and in transgenic mice. J Cell Biol 1995;129:1115–26. https://doi.org/10.1083/jcb.129.4.1115

Snedeker SM, Brown CF, DiAugustine RP. Expression and functional properties of transforming growth factor α and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc Natl Acad Sci U S A 1991;88:276–80. https://doi.org/10.1073/pnas.88.1.276

Fenton SE, Sheffield LG. Lactogenic hormones increase epidermal growth factor messenger RNA content of mouse mammary glands. Biochem Biophys Res Commun 1991;181:1063–9. https://doi.org/10.1016/0006-291X(91)92045-L

Brown CF, Teng CT, Pentecost BT, Diaugustine RP. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells. Mol Endocrinol 1989;3:1077–83. https://doi.org/10.1210/mend-3-7-1077

Sagsoz H, Ketani MA. The role of estrogen receptors, erbB receptors, vascular endothelial growth factor and its receptors, and vascular endothelial growth inhibitor in the development of the rat mammary gland. Growth Factors 2010;28:379–93. https://doi.org/10.3109/08977194.2010.495718

Darcy KM, Zangani D, Wohlhueter AL, Huang R-Y, Vaughan MM, Russell JA, et al. Changes in ErbB2 (her-2/neu), ErbB3, and ErbB4 during growth, differentiation, and apoptosis of normal rat mammary epithelial cells. J Histochem Cytochem 2000;48:63–80. https://doi.org/10.1177/002215540004800107

Darcy KM, Wohlhueter AL, Zangani D, Vaughan MM, Russell JA, Masso-Welch PA, et al. Selective changes in EGF receptor expression and function during the proliferation, differentiation and apoptosis of mammary epithelial cells. Eur J Cell Biol 1999;78:511–23. https://doi.org/10.1016/S0171-9335(99)80077-6

Dati C, Maggiora P, Puech C, Bortoli M De, Escot C. Expression of the erb B-2 proto-oncogene during differentiation of the mammary gland in the rat. Cell Tissue Res 1996;285:403–10. https://doi.org/10.1007/s004410050656

Price-Schiavi SA, Andrechek E, Idris N, Li P, Rong M, Zhang J, et al. Expression, location, and interactions of ErbB2 and its intramembrane ligand Muc4 (sialomucin complex) in rat mammary gland during pregnancy. J Cell Physiol 2005;203:44–53. https://doi.org/10.1002/jcp.20200

Liscia DS, Merlo G, Ciardiello F, Kim N, Smith GH, Callahan R, et al. Transforming growth factor-α messenger RNA localization in the developing adult rat and human mammary gland by in situ hybridization. Dev Biol 1990;140:123–31. https://doi.org/10.1016/0012-1606(90)90059-R

Brown NM, Wang J, Cotroneo MS, Zhao Y-X, Lamartiniere CA. Prepubertal genistein treatment modulates TGF-α, EGF and EGF-receptor mRNAs and proteins in the rat mammary gland. Mol Cell Endocrinol 1998;144:149–65. https://doi.org/10.1016/s0303-7207(98)00106-3

Kariagina A, Xie J, Leipprandt JR, Haslam SZ. Amphiregulin mediates estrogen, progesterone, and EGFR signaling in the normal rat mammary gland and in hormone-dependent rat mammary cancers. Horm Cancer 2010;1:229–44. https://doi.org/10.1007/s12672-010-0048-0

Sheffield LG. Organization and growth of mammary epithelia in the mammary gland fat pad. J Dairy Sci 1988;71:2855–74. https://doi.org/10.3168/jds.S0022-0302(88)79881-1

Spitzer E, Grosse R. EGF receptors on plasma membranes purified from bovine mammary gland of lactating and pregnant animals. Biochem Int 1987;14:581–8.

Moorby CD, Taylor JA, Forsyth IA. Transforming growth factor-α: receptor binding and action on DNA synthesis in the sheep mammary gland. J Endocrinol 1995;144:165–71. https://doi.org/10.1677/joe.0.1440165

Lee B-W, Kim Y-H, Jeon B-S, Yoon B-I, Singh NK, Kim W-H, et al. Expression of ErbB receptors in the pre-pubertal and pubertal virgin mammary glands of dairy cows. Korean J Vet Res 2012;52:269–73.

Sheffield LG. Mastitis increases growth factor messenger ribonucleic acid in bovine mammary glands. J Dairy Sci 1997;80:2020–4. https://doi.org/10.3168/jds.S0022-0302(97)76146-0

Dehnhard M, Claus R, Munz O, Weiler U. Course of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) in mammary secretions of the goat during end-pregnancy and early lactation. J Vet Med Ser A 2000;47:533–40. https://doi.org/10.1046/j.1439-0442.2000.00315.x

Iacopetta BJ, Grieu F, Horisberger M, Sunahara GI. Epidermal growth factor in human and bovine milk. Acta Paediatr 1992;81:287–91. https://doi.org/10.1111/j.1651-2227.1992.tb12227.x

Koff MD, Plaut K. Expression of transforming growth factor-α-like messenger ribonucleic acid transcripts in the bovine mammary gland. J Dairy Sci 1995;78:1903–8. https://doi.org/10.3168/jds.S0022-0302(95)76815-1

Zurfluft LL, Boltent SL, Byatt JC, McGrath MF, Tou JS, Zupec ME, et al. Isolation of genomic sequence encoding a biologically active bovine TGF- α protein. Growth Factors 1990;3:257–66. https://doi.org/10.3109/08977199009003668

Plath A, Einspanier R, Peters F, Sinowatz F, Schams D. Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation. J Endocrinol 1997;155:501–11. https://doi.org/10.1677/joe.0.1550501

Forsyth IA, Taylor JA, Keable S, Turvey A, Lennard S. Expression of amphiregulin in the sheep mammary gland. Mol Cell Endocrinol 1997;126:41–8. https://doi.org/10.1016/s0303-7207(96)03967-6

Donnay I, Devleeschouwer N, Leclercq G, Verstegen J. Changes in oestrogen, progesterone and epidermal growth factor receptor concentrations and affinities during the oestrous cycle in the normal mammary gland and uterus of dogs 1995;19:101–13. https://doi.org/10.1007/bf01839276

Nerurkar VR, Seshadri R, Mulherkar R, Ishwad CS, Lalitha VS, Naik SN. Receptors for epidermal growth factor and estradiol in canine mammary tumors. Int J Cancer 1987;40:230–2. https://doi.org/10.1002/ijc.2910400218

Queiroga FL, Pérez-Alenza D, Silvan G, Peña L, Peña P, Illera JC. Positive correlation of steroid hormones and EGF in canine mammary cancer. J Steroid Biochem Mol Biol 2009;115:9–13. https://doi.org/10.1016/j.jsbmb.2009.01.018

Gama A, Gärtner F, Alves A, Schmitt F. Immunohistochemical expression of epidermal growth factor receptor (EGFR) in canine mammary tissues. Res Vet Sci 2009;87:432–7. https://doi.org/10.1016/J.RVSC.2009.04.016

Carvalho MI, Pires I, Prada J, Ferreira AF, Queiroga FL. Positive interplay between CD3 + T-lymphocytes and concurrent COX-2/EGFR expression in canine malignant mammary tumors. Anticancer Res 2015;35:2915–20.

Damasceno KA, Ferreira E, Estrela-Lima A, Gamba C de O, Miranda FF, Alves MR, et al. HER-2 and EGFR mRNA expression and its relationship with versican in malignant matrix-producing tumors of the canine mammary gland. PLoS One 2016;11:e0160419. https://doi.org/10.1371/journal.pone.0160419

Guimarães MJ, Carvalho MI, Pires I, Prada J, Gil AG, Lopes C, et al. Concurrent expression of cyclo-oxygenase-2 and epidermal growth factor receptor in canine malignant mammary tumours. J Comp Pathol 2014;150:27–34. https://doi.org/10.1016/j.jcpa.2013.07.005

Carvalho MI, Guimarães MJ, Pires I, Prada J, Silva-Carvalho R, Lopes C, et al. EGFR and microvessel density in canine malignant mammary tumours. Res Vet Sci 2013;95:1094–9. https://doi.org/10.1016/j.rvsc.2013.09.003

Matsuyama S, Nakamura M, Yonezawa K, Shimada T, Ohashi F. Expression patterns of the erbB subfamily mRNA in canine benign and malignant mammary tumors. J Vet Med Sci 2001;63:949–54. https://doi.org/10.1292/jvms.63.949

Martín De Las Mulas J, Ordás J, Millán Y, Fernández-Soria V, Ramón Y Cajal S. Oncogene HER-2 in canine mammary gland carcinomas: an immunohistochemical and chromogenic in situ hybridization study. Breast Cancer Res Treat 2003;80:363–7. https://doi.org/10.1023/A:1024929730165

Seung B-J, Cho S-H, Kim S-H, Lim H-Y, Sur J-H. Quantitative analysis of HER2 mRNA expression by RNA in situ hybridization in canine mammary gland tumors: comparison with immunohistochemistry analysis. PLoS One 2020;15:e0229031. https://doi.org/10.1371/journal.pone.0229031

Burrai GP, Tanca A, De Miglio MR, Abbondio M, Pisanu S, Polinas M, et al. Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer? Tumor Biol 2015;36:9083–91. https://doi.org/10.1007/s13277-015-3661-2

Ressel L, Puleio R, Ruggero Loria G, Vannozzi I, Millanta F, Caracappa S, et al. HER-2 expression in canine morphologically normal, hyperplastic and neoplastic mammary tissues and its correlation with the clinical outcome. Res Vet Sci 2013;94:299–305. https://doi.org/10.1016/j.rvsc.2012.09.016

Dutra AP, Granja NVM, Schmitt FC, Cassali GD. c-erbB-2 expression and nuclear pleomorphism in canine mammary tumors. Brazilian J Med Biol Res 2004;37:1673–81. https://doi.org/10.1590/S0100-879X2004001100013

Shinoda H, Legare ME, Mason GL, Berkbigler JL, Afzali MF, Flint AF, et al. Significance of ERα, HER2, and CAV1 expression and molecular subtype classification to canine mammary gland tumor. J Vet Diagnostic Investig 2014;26:390–403. https://doi.org/10.1177/1040638714527289

Hsu WL, Huang HM, Liao JW, Wong ML, Chang SC. Increased survival in dogs with malignant mammary tumours overexpressing HER-2 protein and detection of a silent single nucleotide polymorphism in the canine HER-2 gene. Vet J 2009;180:116–23. https://doi.org/10.1016/j.tvjl.2007.10.013

Damasceno KA, Ferreira E, Estrela-Lima A, Bosco Y, Silva LP, Barros ALB, et al. Relationship between the expression of versican and EGFR, HER-2, HER-3 and CD44 in matrixproducing tumours in the canine mammary gland. Histol Histopathol 2016;31:675–88. https://doi.org/10.14670/HH-11-705

De Maria R, Olivero M, Iussich S, Nakaichi M, Murata T, Biolatti B, et al. Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Res 2005;65:907–12.

Ordás J, Millán Y, Dios R, Reymundo C, de las Mulas JM. Proto-oncogene HER-2 in normal, dysplastic and tumorous feline mammary glands: an immunohistochemical and chromogenic in situ hybridization study. BMC Cancer 2007;7:179. https://doi.org/10.1186/1471-2407-7-179

Ferreira D, Soares M, Correia J, Adega F, Ferreira F, Chaves R. Assessment of ERBB2 and TOP2a gene status and expression profile in feline mammary tumors: findings and guidelines. Aging (Albany NY) 2019;11:4688–705. https://doi.org/10.18632/aging.102079

Millanta F, Calandrella M, Citi S, Della Santa D, Poli A. Overexpression of HER-2 in feline invasive mammary carcinomas: an immunohistochemical survey and evaluation of its prognostic potential. Vet Pathol 2005;42:30–4. https://doi.org/10.1354/vp.42-1-30

Muscatello LV, Di Oto E, Sarli G, Monti V, Foschini MP, Benazzi C, et al. HER2 amplification status in feline mammary carcinoma: a tissue microarray-fluorescence in situ hydridization-based study. Vet Pathol 2019;56:230–8. https://doi.org/10.1177/0300985818808531

Soares M, Correia J, Rodrigues P, Simões M, De Matos A, Ferreira F. Feline HER2 protein expression levels and gene status in feline mammary carcinoma: Optimization of immunohistochemistry (IHC) and in situ hybridization (ISH) techniques. Microsc. Microanal., vol. 19, Cambridge University Press; 2013, p. 876–82. https://doi.org/10.1017/S1431927613001529

Wang Editor Z. ErbB Receptor Signaling Methods and Protocols Methods in Molecular Biology 1652, n.d.

Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 2012;136:331–45. https://doi.org/10.1007/s10549-012-2289-9

Meseure D, Vacher S, Drak Alsibai K, Trassard M, Susini A, Le Ray C, et al. Profiling of EGFR mRNA and protein expression in 471 breast cancers compared with 10 normal tissues: a candidate biomarker to predict EGFR inhibitor effectiveness. Int J Cancer 2012;131:1009–10. https://doi.org/10.1002/IJC.26434

Viale G, Rotmensz N, Maisonneuve P, Bottiglieri L, Montagna E, Luini A, et al. Invasive ductal carcinoma of the breast with the “triple-negative” phenotype: prognostic implications of EGFR immunoreactivity. Breast Cancer Res Treat 2009;116:317–28. https://doi.org/10.1007/S10549-008-0206-Z

Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 2013;3:224–37. https://doi.org/10.1158/2159-8290.CD-12-0349

Ma J, Lyu H, Huang J, Liu B. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Mol Cancer 2014;13:1–9. https://doi.org/10.1186/1476-4598-13-105/FIGURES/2

Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev 2018;12:45–62. https://doi.org/10.4081/ONCOL.2018.355

Jones FE. HER4 intracellular domain (4ICD) activity in the developing mammary gland and breast cancer. J Mammary Gland Biol Neoplasia 2008;13:247–58. https://doi.org/10.1007/s10911-008-9076-6

Bates SE, Valverius EM, Ennis BW, Bronzert DA, Sheridan JP, Stampfer MR, et al. Expression of the transforming growth factor-/epidermal growth factor receptor pathway in normal human breast epithelial cells. Endocrinology 1990;126:596–607. https://doi.org/10.1210/endo-126-1-596

Valverius EM, Bates SE, Stampfer MR, Clark R, McCormick F, Salomon DS, et al. Transforming growth factor α production and epidermal growth factor receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol Endocrinol 1989;3:203–14. https://doi.org/10.1210/mend-3-1-203

Santini D, Ceccarelli C, Tardio ML, Taffurelli M, Marrano D. Immunocytochemical expression of epidermal growth factor receptor in myoepithelial cells of the breast. Appl Immunohistochem Mol Morphol 2002;10:29–33. https://doi.org/10.1097/00129039-200203000-00005

Tsutsumi Y, Naber SP, DeLellis RA, Wolfe HJ, Marks PJ, McKenzie SJ, et al. Neu oncogene protein and epidermal growth factor receptor are independently expressed in benign and malignant breast tissues. Hum Pathol 1990;21:750–8. https://doi.org/10.1016/0046-8177(90)90035-4

Damjanov I, Mildner B, Knowles BB. Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues. Lab Invest 1986;55:588–92.

Li S, Plowman GD, Buckley SD, Shipley GD. Heparin inhibition of autonomous growth implicates amphiregulin as an autocrine growth factor for normal human mammary epithelial cells. J Cell Physiol 1992;111:103–11. DOI: 10.1002/jcp.1041530114.

Pardo I, Lillemoe HA, Blosser RJ, Choi MR, Sauder CAM, Doxey DK, et al. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res 2014;16:R26–R26. https://doi.org/10.1186/BCR3627

Mukhopadhyay C, Zhao X, Maroni D, Band V, Naramura M. Distinct effects of EGFR ligands on human mammary epithelial cell differentiation. PLoS One 2013;8:e75907. https://doi.org/10.1371/journal.pone.0075907

Pasic L, Eisinger-Mathason TSK, Velayudhan BT, Moskaluk CA, Brenin DR, Macara IG, et al. Sustained activation of the HER1-ERK1/2-RSK signaling pathway controls myoepithelial cell fate in human mammary tissue. Genes Dev 2011;25:1641–53. https://doi.org/10.1101/gad.2025611

Dvorak B. Milk epidermal growth factor and Gut Protection. J Pediatr 2010;156:31–5. https://doi.org/10.1016/j.jpeds.2009.11.018

Cardy RH. Sexual dimorphism of the normal rat mammary gland. Vet Pathol 1991;28:139–45. https://doi.org/10.1177/030098589102800206

Pompei LM, Carvalho FM, Ortiz SCBC, Motta MC, Cruz RJ, Melo NR. Morphometric evaluation of effects of two sex steroids on mammary gland of female rats. Maturitas 2005;51:370–9. https://doi.org/10.1016/J.MATURITAS.2004.09.007

Jenkins EC, Debnath S, Gundry S, Gundry S, Uyar U, Fata JE. Intracellular pH regulation by Na+/H + exchanger-1 (NHE1) is required for growth factor-induced mammary branching morphogenesis. Dev Biol 2012;365:71–81. https://doi.org/10.1016/j.ydbio.2012.02.010

Camacho Leal M del P, Pincini A, Tornillo G, Fiorito E, Bisaro B, Di Luca E, et al. p130Cas over-expression impairs mammary branching morphogenesis in response to estrogen and EGF. PLoS One 2012;7:e49817. https://doi.org/10.1371/journal.pone.0049817

Imagawa W, Tomooka Y, Hamamoto S, Nandi S. Stimulation of mammary epithelial cell growth in vitro: interaction of epidermal growth factor and mammogenic hormones. Endocrinology 1985;116:1514–24. https://doi.org/10.1210/endo-116-4-1514

Mohanam S, Salomon DS, Kidwell WR. Substratum modulation of epidermal growth factor receptor expression by normal mouse mammary cells. J Dairy Sci 1988;71:1507–14. https://doi.org/10.3168/jds.S0022-0302(88)79714-3

Xie W, Paterson AJ, Chin E, Nabell LM, Kudlow JE. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol 1997;11:1766–81. https://doi.org/10.1210/mend.11.12.0019

Wiesen JF, Young P, Werb Z, Cunha GR, Mandel R, Krajewski S, et al. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 1999;126:335–44. https://doi.org/10.1242/dev.126.2.335

Aupperlee MD, Leipprandt JR, Bennett JM, Schwartz RC, Haslam SZ. Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast Cancer Res 2013;15. https://doi.org/10.1186/bcr3431

Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ, et al. Epidermal growth factor receptor (EGFR) signaling is a key mediator of Hormone-Induced leukocyte infiltration in the Pubertal Female Mammary Gland. Endocrinology 2014;155:2301–13. https://doi.org/10.1210/en.2013-1933

Jackson-Fisher AJ, Bellinger G, Ramabhadran R, Morris JK, Lee K-F, Stern DF. ErbB2 is required for ductal morphogenesis of the mammary gland. Proc Natl Acad Sci 2004;101:17138–43. https://doi.org/10.1073/pnas.0407057101

Andrechek ER, White D, Muller WJ. Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene 2005;24:932–7. https://doi.org/10.1038/sj.onc.1208230

Jackson-Fisher AJ, Bellinger G, Breindel JL, Tavassoli FA, Booth CJ, Duong JK, et al. ErbB3 is required for ductal morphogenesis in the mouse mammary gland. Breast Cancer Res 2008;10. https://doi.org/10.1186/bcr2198

Lahlou H, Müller T, Sanguin-Gendreau V, Birchmeier C, Muller WJ. Uncoupling of PI3K from ErbB3 impairs mammary gland development but does not impact on ErbB2-induced mammary tumorigenesis. Cancer Res 2012;72:3080–90. https://doi.org/10.1158/0008-5472.CAN-11-3513

Jones FE, Jerry DJ, Guarino BC, Andrews GC SD. Heregulin induces in vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli. Cell Growth Differ 1996;7:1031–8.

Wali VB, Gilmore-Hebert M, Mamillapalli R, Haskins JW, Kurppa KJ, Elenius K, et al. Overexpression of ERBB4 JM-a CYT-1 and CYT-2 isoforms in transgenic mice reveals isoformspecific roles in mammary gland development and carcinogenesis. Breast Cancer Res 2014;16:501. https://doi.org/10.1186/s13058-014-0501-z

Muraoka-Cook RS, Sandahl MA, Strunk KE, Miraglia LC, Husted C, Hunter DM, et al. ErbB4 splice variants Cyt1 and Cyt2 differ by 16 amino acids and exert opposing effects on the mammary epithelium in vivo. Mol Cell Biol 2009;29:4935–48. https://doi.org/10.1128/mcb.01705-08

Hilakivi-Clarke L, Cho E, Raygada M, Kenney N. Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor α, and estrogen receptor antagonist ICI 182,780. J Cell Physiol 1997;170:279–89. https://doi.org/10.1002/(SICI)1097-4652(199703)170:3%3C279::AID-JCP9%3E3.0.CO;2-L

Berryhill GE, Lemay DG, Trott JF, Aimo L, Lock AL, Hovey RC. The transcriptome of estrogen-independent mammary growth in female mice reveals that not all mammary glands are created equally. Endocrinology 2017;158:3126–39. https://doi.org/10.1210/en.2017-00395

Sinha YN, Tucker HA. Mammary development and pituitary prolactin level of heifers from birth through puberty and during the estrous cycle. J Dairy Sci 1969;52:507–12. https://doi.org/10.3168/jds.S0022-0302(69)86595-1

Meyer MJ, Capuco A V., Ross DA, Lintault LM, Van Amburgh ME. Developmental and nutritional regulation of the prepubertal heifer mammary gland: I. Parenchyma and fat pad mass and composition. J Dairy Sci 2006;89:4289–97. https://doi.org/10.3168/jds.S0022-0302(06)72475-4

Johnsson ID, Hart IC. Pre-pubertal mammogenesis in the sheep 1. The effects of level of nutrition on growth and mammary development in female lambs. Anim Prod 1985;41:323–32. https://doi.org/10.1017/S0003356100036370

Capuco A V., Ellis S, Wood DL, Akers RM, Garrett W. Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 2002;34:143–54. https://doi.org/10.1016/S0040-8166(02)00024-1

Purup S, Vestergaard M, Sejrsen K. Involvement of growth factors in the regulation of pubertal mammary growth in cattle. Adv Exp Med Biol 2000;480:27–43. https://doi.org/10.1007/0-306-46832-8_4

Forsyth IA, Taylor JA, Moorby CD. DNA synthesis by ovine mammary alveolar epithelial cells: Effects of heparin, epidermal growth factor-related peptides and interaction with stage of pregnancy. J Endocrinol 1998;156:283–90. https://doi.org/10.1677/joe.0.1560283

Tou JS, McGrath MF, Zupec ME, Byatt JC, Violand BN, Kaempfe LA, et al. Chemical synthesis of bovine transforming growth factor-α: synthesis, characterization and biological activity. Biochem Biophys Res Commun 1990;167:484–91. https://doi.org/10.1016/0006-291X(90)92049-6

Collier RJ, Mcgrath MF, Byatt JC, Zurfluh LL. Regulation of bovine mammary growth by peptide hormones: involvement of receptors, growth factors and binding proteins. Livest Prod Sci 1993;35:21–33. https://doi.org/10.1016/0301-6226(93)90179-L

Peri I, Shamay A, McGrath MF, Collier RJ, Gertler A. Comparative mitogenic and galactopoietic effects of IGF-I, IGF-II and DES-3-IGF-I in bovine mammary gland in vitro. Cell Biol Int Rep 1992;16:359–68. https://doi.org/10.1016/S0309-1651(06)80141-4

Waksman M, Shamay A, Gertler A. Bovine pituitary, kidney, uterine and mammary gland extracts contain bovine mammary epithelium growth factors that synergise with IGF-I and fetal calf serum: indication for involvement of GTP-binding proteins. Domest Anim Endocrinol 1991;8:271–80. https://doi.org/10.1016/0739-7240(91)90063-p

Sheffield LG, In Suh Yuh. Influence of epidermal growth factor on growth of bovine mammary tissue in athymic nude mice. Domest Anim Endocrinol 1988;5:141–7. https://doi.org/10.1016/0739-7240(88)90014-8

Tonelli QJ, Sorof S. Epidermal growth factor requirement for development of cultured mammary gland. Nature 1980;285:250–2. https://doi.org/10.1038/285250a0

Fenton SE, Sheffield LG. Prolactin inhibits EGF-induced DNA synthesis in mammary epithelium via early signaling mechanisms: possible involvement of protein kinase C. Exp Cell Res 1997;236:285–93. https://doi.org/10.1006/excr.1997.3727

Taketani Y, Oka T. Epidermal growth factor stimulates cell proliferation and inhibits functional differentiation of mouse mammary epithelial cells in culture. Endocrinology 1983;113:871–7. https://doi.org/10.1210/endo-113-3-871

Vonderhaar BK, Nakhasi HL. Bifunctional activity of epidermal growth factor on α- and κ-Casein gene expression in rodent mammary glands in vitro. Endocrinology 1986;119:1178–84. https://doi.org/10.1210/endo-119-3-1178

Sankaran L, Topper YJ. Is EGF a physiological inhibitor of mouse mammary casein synthesis? Unphysiological responses to pharmacological levels of hormones. Biochem Biophys Res Commun 1987;146:121–5. https://doi.org/10.1016/0006-291X(87)90699-1

Kobayashi K, Oyama S, Kuki C, Tsugami Y, Matsunaga K, Suzuki T, et al. Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in β-casein secretion pathway in lactating mammary epithelial cells. Mol Cell Endocrinol 2017;440:16–24. https://doi.org/10.1016/j.mce.2016.11.006

Tidcombe H, Jackson-fisher A, Mathers K, Stern DF, Gassmann M, Golding JP. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci 2003;100:8281–6.

Mapes J, Li Q, Kannan A, Anandan L, Laws M, Lydon JP, et al. CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. PLOS Genet 2017;13:e1006654. https://doi.org/10.1371/journal.pgen.1006654

Muraoka-Cook RS, Sandahl M, Hunter D, Miraglia L, Earp HS. Prolactin and ErbB4/HER4 signaling interact via janus kinase 2 to induce mammary epithelial cell gene expression differentiation. Mol Endocrinol 2008;22:2307–21. https://doi.org/10.1210/me.2008-0055

Li L, Cleary S, Mandarano MA, Long W, Birchmeier C, Jones FE. The breast proto-oncogene, HRGα regulates epithelial proliferation and lobuloalveolar development in the mouse mammary gland. Oncogene 2002;21:4900–7. https://doi.org/10.1038/sj.onc.1205634

Swanson EW, Poffenbarger JI. Mammary gland development of dairy heifers during their first gestation. J Dairy Sci 1979;62:702–14. https://doi.org/10.3168/jds.S0022-0302(79)83313-5

Anderson RR, Harness JR, Snead AF, Salah MS. Mammary growth pattern in goats during pregnancy and lactation. J Dairy Sci 1981;64:427–32. https://doi.org/10.3168/jds.S0022-0302(81)82589-1

Anderson RR. Mammary gland growth in sheep. J Anim Sci 1975;41:118–23. https://doi.org/10.2527/jas1975.411118x

Sheffield LG. Hormonal regulation of epidermal growth factor receptor content and signaling in bovine mammary tissue. Endocrinology 1998;139:4568–75. https://doi.org/10.1210/endo.139.11.6318

Sheffield LG, Welsch CW. Cyclic nucleotide concentrations and protein kinase activities of bovine mammary tissue maintained in athymic nude mice: effects of mammogenic and lactogenic hormones. J Dairy Sci 1988;71:75–83. https://doi.org/10.3168/jds.S0022-0302(88)79527-2

Sheffield LG, Eppler CM, Tucker HA, Welsch CW. Influence of recombinant deoxyribonucleic acid-derived bovine growth hormone on α-lactalbumin production by bovine mammary tissue maintained in athymic nude mice. J Dairy Sci 1988;71:68–74. https://doi.org/10.3168/jds.S0022-0302(88)79526-0

Fowler KJ, Walker F, Alexander W, Hibbs ML, Nice EC, Bohmer RM, et al. A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc Natl Acad Sci 1995;92:1465–9. https://doi.org/10.1073/pnas.92.5.1465

Miettinen PJ, Berger JE, Meneses J, Phung Y, Pedersen RA, Werb Z, et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 1995;376:337–41. https://doi.org/10.1038/376337A0

Dvorak B, Halpern MD, Holubec H, Williams CS, Mcwilliam DL, Dominguez JA, et al. Epidermal growth factor reduces the development of necrotizing enterocolitis in a neonatal rat model. Am J Physiol - Gastrointest Liver Physiol 2002;282:156–64. https://doi.org/10.1152/ajpgi.00196.2001

Schroeder JA, Lee DC. Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 1997;2:119–29. https://doi.org/10.1023/A:1026347629876

Casey TM, Mulvey TM, Patnode TA, Dean A, Zakrzewska E, Plaut K. Mammary epithelial cells treated concurrently with TGF-α and TGF-β exhibit enhanced proliferation and death. Exp Biol Med 2007;232:1027–40. https://doi.org/10.3181/0609-RM-218

Sakai S, Mizuno M, Harigaya T, Yamamoto K, Mori T, Coffey RJ, et al. Cause of failure of lactation in mouse mammary tumor virus/human transforming growth factor α transgenic mice. Proc Soc Exp Biol Med 1994;205:236–42. https://doi.org/10.3181/00379727-205-43702

Booth BW, Jhappan C, Merlino G, Smith GH. TGFβ1 and TGFα contrarily affect alveolar survival and tumorigenesis in mouse mammary epithelium. Int J Cancer 2007;120:493–9. https://doi.org/10.1002/ijc.22310

Kenney NJ, Bowman A, Korach KS, Barrett JC, David S. Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse. Breast Cancer Res Treat 2003;79:161–73. https://doi.org/10.1023/A:1023938510508

Moore GPM, Silvapulle MJ. Lack of effect of epidermal growth factor treatment in late-pregnant ewes on subsequent lactation. J Dairy Res 1991;58:1–11. https://doi.org/10.1017/S0022029900033458

Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 2008;84:623–30. https://doi.org/10.1189/jlb.1107762

Booth BW, Smith GH, Booth BW, Smith GH. Roles of transforming growth factor- α in mammary development and disease. Growth Factors 2009;25:227–35. https://doi.org/10.1080/08977190701750698

Yallowitz AR, Alexandrova EM, Talos F, Xu S, Marchenko ND, Moll UM. P63 is a prosurvival factor in the adult mammary gland during post-lactational involution, affecting PI-MECs and ErbB2 tumorigenesis. Cell Death Differ 2014;21:645–54. https://doi.org/10.1038/cdd.2013.199

Capuco A V., Akers RM. Mammary involution in dairy animals. J Mammary Gland Biol Neoplasia 1999;4:137–44. https://doi.org/10.1023/A:1018769022990

Sobolewska A, Gajewska M, Zarzy J, Gajkowska B, Motyl T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur J Biol 2009;88:117–30. https://doi.org/10.1016/j.ejcb.2008.09.004

Martin PM, Cotard M, Mialot JP, André F, Raynaud JP. Animal models for hormone-dependent human breast cancer - relationship between steroid receptor profiles in canine and feline mammary tumors and survival rate. Cancer Chemother Pharmacol 1984;12:13–7. https://doi.org/10.1007/BF00255902

Beauvais W, Cardwell JM, Brodbelt DC. The effect of neutering on the risk of mammary tumours in dogs - a systematic review. J Small Anim Pract 2012;53:314–22. https://doi.org/10.1111/j.1748-5827.2011.01220.x

Whyte J, Begin O, Bianchi A, McNally S, Martin F. Key signalling nodes in mammary gland development and cancer mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Res 2009;11:209. https://doi.org/10.1186/bcr2361

Booth BW, Boulanger CA, Anderson LH, Jimenez-Rojo L, Brisken C, Smith GH. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Exp Cell Res 2010;316:422–32. https://doi.org/10.1016/j.yexcr.2009.11.006

Fata JE, Mori H, Ewald AJ, Zhang H, Yao E, Werb Z, et al. The MAPK ERK-1,2 pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 2007;306:193–207. https://doi.org/10.1016/j.ydbio.2007.03.013

Arendt LM, Grafwallner-Huseth TL, Schuler LA. Prolactin-growth factor crosstalk reduces mammary estrogen responsiveness despite elevated ERα expression. Am J Pathol 2009;174:1065–74. https://doi.org/10.2353/ajpath.2009.080719

Arendt LM, Rose-Hellekant TA, Sandgren EP, Schuler LA. Prolactin potentiates transforming growth factor induction of mammary neoplasia in transgenic mice. Am J Pathol 2006;168:1365–74. https://doi.org/10.2353/ajpath.2006.050861

Watson JAW and CJ. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 akts. Breast Cancer Res 2010;12:202. https://doi.org/10.1186/bcr2558

Maroulakou IG, Oemler W, Naber SP, Klebba I, Kuperwasser C, Tsichlis PN. Distinct roles of the three akt isoforms in lactogenic differentiation and involution. J Cell Physiol 2008;217:468–77. https://doi.org/10.1002/jcp.21518

Watson CJ, Neoh K. The Stat family of transcription factors have diverse roles in mammary gland development. Semin Cell Dev Biol 2008;19:401–6. https://doi.org/10.1016/J.SEMCDB.2008.07.021

Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng C-X, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004;24:8037–47. https://doi.org/10.1128/mcb.24.18.8037-8047.2004

Li S, Rosen JM. Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol Cell Biol 1995;15:2063–70. https://doi.org/10.1128/mcb.15.4.2063

Kavarthapu R, Dufau ML. Role of EGF/ERBB1 in the transcriptional regulation of the prolactin receptor independent of estrogen and prolactin in breast cancer cells. Oncotarget 2016;7:65602. https://doi.org/10.18632/ONCOTARGET.11579

Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 1999;13:2604–16. https://doi.org/10.1101/gad.13.19.2604

Proietti CJ, Rosemblit C, Beguelin W, Rivas MA, Celeste M, Flaqué D, et al. Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth. Mol Cell Biol 2009;29:1249–65. https://doi.org/10.1128/MCB.00853-08

Philp JAC, Burdon TG, Watson CJ. Differential activation of STATs 3 and 5 during mammary gland development. FEBS Lett 1996;396:77–80. https://doi.org/10.1016/0014-5793(96)01069-1

Khaled WT, Read EKC, Nicholson SE, Baxter FO, Brennan AJ, Came PJ, et al. The IL-4/IL-13/stat6 signalling pathway promotes luminal mammary epithelial cell development. Development 2007;134:2739–50. https://doi.org/10.1242/dev.003194

Zhao G, Liu L, Peek RM, Hao X, Polk DB, Li H, et al. Activation of epidermal growth factor receptor in macrophages mediates feedback inhibition of M2 polarization and gastrointestinal tumor cell growth. J Biol Chem 2016;291:20462. https://doi.org/10.1074/JBC.M116.750182

Cline JM. Assessing the mammary gland of nonhuman primates: effects of endogenous hormones and exogenous hormonal agents and growth factors. Birth Defects Res Part B Dev Reprod Toxicol 2007;80:126–46. https://doi.org/10.1002/BDRB.20112

Schams D, Russe I, Schallenberger E. The role of steroid hormones, prolactin and placental lactogen on mammary gland development in ewes and heifers. J Endocrinol 1984;102:121–30. https://doi.org/10.1677/joe.0.1020121

Graham JD, Mote PA, Salagame U, Van Dijk JH, Balleine RL, Huschtscha LI, et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 2009;150:3318–26. https://doi.org/10.1210/EN.2008-1630

Mcandrew J, Rudland PS, Platt-Higgins AM, Smith JA. Immunolocalization of alpha-transforming growth factor in the developing rat mammary gland in vivo, rat mammary cells in vitro and in human breast diseases. Histochem J 1994;26:355–66. https://doi.org/10.1007/BF00157769

Yang J, Guzman R, Richards J, Imagawa W, McCormick K, Nandi S. Growth factor- and cyclic nucleotide-induced proliferation of normal and malignant mammary epithelial cells in primary culture. Endocrinology 1980;107:35–41. https://doi.org/10.1210/endo-107-1-35

Vonderhaar BK. Local effects of EGF, α-TGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary gland in vivo. J Cell Physiol 1987;132:581–4. https://doi.org/10.1002/jcp.1041320324

Smith JA, Barraclough R, Fernig DG, Rudland PS. Identification of alpha transforming growth factor as a possible local trophic agent for the mammary gland. J Cell Physiol 1989;141:362–70. https://doi.org/10.1002/jcp.1041410218