Journal of General Physiology

  0022-1295

  1540-7748

  Mỹ

Cơ quản chủ quản:  ROCKEFELLER UNIV PRESS , Rockefeller University Press

Lĩnh vực:
Physiology

Các bài báo tiêu biểu

THE METABOLISM OF TUMORS IN THE BODY
Tập 8 Số 6 - Trang 519-530 - 1927
Otto Warbürg, Franz Wind, Erwin Negelein
THE ESTIMATION OF PEPSIN, TRYPSIN, PAPAIN, AND CATHEPSIN WITH HEMOGLOBIN
Tập 22 Số 1 - Trang 79-89 - 1938
M. L. Anson
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES
Tập 27 Số 1 - Trang 37-60 - 1943
David E. Goldman
Impedance and potential measurements have been made on a number of artificial membranes. Impedance changes were determined as functions of current and of the composition of the environmental solutions. It was shown that rectification is present in asymmetrical systems and that it increases with the membrane potential. The behavior in pairs of solutions of the same salt at different concentrations has formed the basis for the studies although a few experiments with different salts at the same concentrations gave results consistent with the conclusions drawn. A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures. The equations have been solved for two very simple cases; one based on the assumption of microscopic electroneutrality, and the other on the assumption of a constant electric field. The latter was found to give better results than the former in interpreting the data on potentials and rectification, showing agreement, however, of the right order of magnitude only. Although the indications are that a careful treatment of boundary conditions may result in better agreement with experiment, no attempt has been made to carry this through since the data now available are not sufficiently complete or reproducible. Applications of the second theoretical case to the squid giant axon have been made showing qualitative agreement with the rectification properties and very good agreement with the membrane potential data.
Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction.
Tập 69 Số 4 - Trang 497-515 - 1977
Bertil Hille
The properties of Na channels of the node of Ranvier are altered by neutral, amine, and quaternary local anesthetic compounds. The kinetics of the Na currents are governed by a composite of voltage- and time-dependent gating processes with voltage- and time-dependent block of channels by drug. Conventional measurements of steady-state sodium inactivation by use of 50-ms prepulses show a large negative voltage shift of the inactivation curve with neutral benzocaine and with some ionizable amines like lidocaine and tetracaine, but no shift is seen with quaternary OX-572. However, when the experiment is done with repetitive application of a prepulse-testpulse waveform, a shift with the quaternary cations (applied internally) is seen as well. 1-min hyperpolarizations of lidocaine- or tetracaine-treated fibers restore two to four times as many channels to the conducting pool as 50-ms hyperpolarizations. Raising the external Ca++ concentration also has a strong unblocking effect. These manipulations do not relieve block in fibers treated with internal quaternary drugs. The results are interpreted in terms of a single receptor in Na channels for the different drug types. Lipid-soluble drug forms are thought to come and go from the receptor via a hydrophobic region of the membrane, while charged and less lipid-soluble forms pass via a hydrophilic region (the inner channel mouth). The hydrophilic pathway is open only when the gates of the channel are open. Any drug form in the channel increases the probability of closing the inactivation gate which, in effect, is equivalent to a negative shift of the voltage dependence of inactivation.
INDEPENDENT FUNCTIONS OF VIRAL PROTEIN AND NUCLEIC ACID IN GROWTH OF BACTERIOPHAGE
Tập 36 Số 1 - Trang 39-56 - 1952
A. D. Hershey, Martha Chase
1. Osmotic shock disrupts particles of phage T2 into material containing nearly all the phage sulfur in a form precipitable by antiphage serum, and capable of specific adsorption to bacteria. It releases into solution nearly all the phage DNA in a form not precipitable by antiserum and not adsorbable to bacteria. The sulfur-containing protein of the phage particle evidently makes up a membrane that protects the phage DNA from DNase, comprises the sole or principal antigenic material, and is responsible for attachment of the virus to bacteria. 2. Adsorption of T2 to heat-killed bacteria, and heating or alternate freezing and thawing of infected cells, sensitize the DNA of the adsorbed phage to DNase. These treatments have little or no sensitizing effect on unadsorbed phage. Neither heating nor freezing and thawing releases the phage DNA from infected cells, although other cell constituents can be extracted by these methods. These facts suggest that the phage DNA forms part of an organized intracellular structure throughout the period of phage growth. 3. Adsorption of phage T2 to bacterial debris causes part of the phage DNA to appear in solution, leaving the phage sulfur attached to the debris. Another part of the phage DNA, corresponding roughly to the remaining half of the DNA of the inactivated phage, remains attached to the debris but can be separated from it by DNase. Phage T4 behaves similarly, although the two phages can be shown to attach to different combining sites. The inactivation of phage by bacterial debris is evidently accompanied by the rupture of the viral membrane. 4. Suspensions of infected cells agitated in a Waring blendor release 75 per cent of the phage sulfur and only 15 per cent of the phage phosphorus to the solution as a result of the applied shearing force. The cells remain capable of yielding phage progeny. 5. The facts stated show that most of the phage sulfur remains at the cell surface and most of the phage DNA enters the cell on infection. Whether sulfur-free material other than DNA enters the cell has not been determined. The properties of the sulfur-containing residue identify it as essentially unchanged membranes of the phage particles. All types of evidence show that the passage of phage DNA into the cell occurs in non-nutrient medium under conditions in which other known steps in viral growth do not occur. 6. The phage progeny yielded by bacteria infected with phage labeled with radioactive sulfur contain less than 1 per cent of the parental radioactivity. The progeny of phage particles labeled with radioactive phosphorus contain 30 per cent or more of the parental phosphorus. 7. Phage inactivated by dilute formaldehyde is capable of adsorbing to bacteria, but does not release its DNA to the cell. This shows that the interaction between phage and bacterium resulting in release of the phage DNA from its protective membrane depends on labile components of the phage particle. By contrast, the components of the bacterium essential to this interaction are remarkably stable. The nature of the interaction is otherwise unknown. 8. The sulfur-containing protein of resting phage particles is confined to a protective coat that is responsible for the adsorption to bacteria, and functions as an instrument for the injection of the phage DNA into the cell. This protein probably has no function in the growth of intracellular phage. The DNA has some function. Further chemical inferences should not be drawn from the experiments presented.
Interaction of Tetraethylammonium Ion Derivatives with the Potassium Channels of Giant Axons
Tập 58 Số 4 - Trang 413-437 - 1971
Clay M. Armstrong
A number of compounds related to TEA+ (tetraethylammoniumion) were injected into squid axons and their effects on gK (the potassium conductance) were determined. In most of these ions a quaternary nitrogen is surrounded by three ethyl groups and a fourth group that is very hydrophobic. Several of the ions cause inactivation of gK, a type of ionic gating that is not normally seen in squid axon; i.e., after depolarization gK increases and then spontaneously decreases to a small fraction of its peak value even though the depolarization is maintained. Observations on the mechanism of this gating show that (a) QA (quaternary ammonium) ions only enter K+ channels that have open activation gates (the normal permeability gates). (b) The activation gates of QA-occluded channels do not close readily. (c) Hyperpolarization helps to clear QA ions from the channels. (d) Raising the external K+ concentration also helps to clear QA ions from the channels. Observations (c) and (d) strongly suggest that K+ ions traverse the membrane by way of pores, and they cannot be explained by the usual type of carrier model. The data suggest that a K+ pore has two distinct parts: a wide inner mouth that can accept a hydrated K+ ion or a TEA+-like ion, and a narrower portion that can accept a dehydrated or partially dehydrated K+ ion, but not TEA+.
Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell.
Tập 85 Số 2 - Trang 247-289 - 1985
A Fabiato
Microprocessor-controlled changes of [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils of a skinned canine cardiac Purkinje cell and aequorin bioluminescence recording were used to study the mechanism of Ca2+-induced release of Ca2+ from the SR. This Ca2+ release is triggered by a rapid increase of [free Ca2+] at the outer surface of the SR of a previously quiescent skinned cell. Ca2+-induced release of Ca2+ occurred under conditions that prevented any synthesis of ATP from ADP, was affected differentially by interventions that depressed the SR Ca2+ pump about equally, and required ionic conditions incompatible with all known Ca2+-releasing, uncoupled, partial reactions of the Ca2+ pump. Increasing the [free Ca2+]trigger up to an optimum increased the amount of Ca2+ released. A supraoptimum increase of [free Ca2+] trigger inactivated Ca2+-induced release of Ca2+, but partial inactivation was also observed at [free Ca2+] below that necessary for its activation. The amplitude of the Ca2+ release induced by a given increase of [free Ca2+] decreased when the rate of this increase was diminished. These results suggest that Ca2+-induced release of Ca2+ is through a channel across the SR membrane with time- and Ca2+-dependent activation and inactivation. The inactivating binding site would have a higher affinity for Ca2+ but a lower rate constant than the activating site. Inactivation appeared to be a first-order kinetic reaction of Ca2+ binding to a single site at the outer face of the SR with a Q10 of 1.68. The removal of inactivation was the slowest step of the cycle, responsible for a highly temperature-dependent (Q10 approximately 4.00) refractory period.
Anatomy and Physiology of Vision in the Frog (<i>Rana pipiens</i>)
Tập 43 Số 6 - Trang 129-175 - 1960
Humberto R. Maturana, Jerome Y. Lettvin, Warren S. McCulloch, Walter Pitts
The Permeability of the Sodium Channel to Organic Cations in Myelinated Nerve
Tập 58 Số 6 - Trang 599-619 - 1971
Bertil Hille
The relative permeability of sodium channels to 21 organic cations was studied in myelinated nerve fibers. Ionic currents under voltage-clamp conditions were measured in sodium-free solutions containing the test cation. The measured reversal potential and the Goldman equation were used to calculate relative permeabilities. The permeability sequence was: sodium ≈ hydroxylamine &gt; hydrazine &gt; ammonium ≈ formamidine ≈ guanidine ≈ hydroxyguanidine &gt; aminoguanididine &gt;&gt; methylamine. The cations of the following compounds were not measurably permeant: N-methylhydroxylamine, methylhydrazine, methylamine, methylguanidine, acetamidine, dimethylamine, tetramethylammonium, tetraethylammonium, ethanolamine, choline, tris(hydroxymethyl)amino methane, imidazole, biguanide, and triaminoguanidine. Thus methyl and methylene groups render cations impermeant. The results can be explained on geometrical grounds by assuming that the sodium channel is an oxygen-lined pore about 3 A by 5 A in cross-section. One pair of oxygens is assumed to be an ionized carboxylic acid. Methyl and amino groups are wider than the 3 A width of the channel. Nevertheless, cations containing amino groups can slide through the channel by making hydrogen bonds to the oxygens. However, methyl groups, being unable to form hydrogen bonds, are too wide to pass through.
A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability
Tập 45 Số 1 - Trang 143-179 - 1961
O. Kedem, A. Katchalsky
A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes.