Journal of Fluid Mechanics

Công bố khoa học tiêu biểu

Sắp xếp:  
The influence of a third diffusing component upon the onset of convection
Journal of Fluid Mechanics - Tập 92 Số 4 - Trang 659-670 - 1979
Ross W. Griffiths
The small amplitude stability analysis for the onset of double-diffusive convection when the density gradient is gravitationally stable is extended to include a third diffusing component. Special attention is given to systems with κ1 [Gt ] κ2, κ3 and Pr [Gt ] κ/κ1, where κi is the molecular diffusivity of the ith component and Pr is the Prandtl number based on the largest of the Ki. It is found that the boundary for the onset of overstability is approximated by two straight lines in a Rayleigh number plane. Small concentrations of a third property with a smaller diffusivity can have a significant effect upon the nature of diffusive instabilities, the magnitude of this effect being proportional to κ1/Ki. Oscillatory and direct ‘salt-finger’ modes are found to be simultaneously unstable under a wide range of conditions when the density gradients due to the components with the greatest and smallest diffusivities are of the same sign.
Droplet spreading and absorption on rough, permeable substrates
Journal of Fluid Mechanics - Tập 784 - Trang 465-486 - 2015
Leonardo Espín, Satish Kumar
Wetting of permeable substrates by liquids is an important phenomenon in many natural and industrial processes. Substrate heterogeneities may significantly alter liquid spreading and interface shapes, which in turn may alter liquid imbibition. A new lubrication-theory-based model for droplet spreading on permeable substrates that incorporates surface roughness is developed in this work. The substrate is assumed to be saturated with liquid, and the contact-line region is described by including a precursor film and disjoining pressure. A novel boundary condition for liquid imbibition is applied that eliminates the need for a droplet-thickness-dependent substrate permeability that has been employed in previous models. A nonlinear evolution equation describing droplet height as a function of time and the radial coordinate is derived and then numerically solved to characterize the influence of substrate permeability and roughness on axisymmetric droplet spreading. Because it incorporates surface roughness, the new model is able to describe the contact-line pinning that has been observed in experiments but not captured by previous models.
Creeping motion of a sphere through a Bingham plastic
Journal of Fluid Mechanics - Tập 158 - Trang 219-244 - 1985
Antony N. Beris, John Tsamopoulos, R. C. Armstrong, Robert A. Brown
A solid sphere falling through a Bingham plastic moves in a small envelope of fluid with shape that depends on the yield stress. A finite-element/Newton method is presented for solving the free-boundary problem composed of the velocity and pressure fields and the yield surfaces for creeping flow. Besides the outer surface, solid occurs as caps at the front and back of the sphere because of the stagnation points in the flow. The accuracy of solutions is ascertained by mesh refinement and by calculation of the integrals corresponding to the maximum and minimum variational principles for the problem. Large differences from the Newtonian values in the flow pattern around the sphere and in the drag coefficient are predicted, depending on the dimensionless value of the critical yield stressYgbelow which the material acts as a solid. The computed flow fields differ appreciably from Stokes’ solution. The sphere will fall only whenYgis below 0.143 For yield stresses near this value, a plastic boundary layer forms next to the sphere. Boundary-layer scalings give the correct forms of the dependence of the drag coefficient and mass-transfer coefficient on yield stress for values near the critical one. The Stokes limit of zero yield stress is singular in the sense that for any small value ofYgthere is a region of the flow away from the sphere where the plastic portion of the viscosity is at least as important as the Newtonian part. Calculations For the approach of the flow field to the Stokes result are in good agreement with the scalings derived from the matched asymptotic expansion valid in this limit.
Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment
Journal of Fluid Mechanics - Tập 601 - Trang 123-164 - 2008
John Tsamopoulos, Yannis Dimakopoulos, N. Chatzidai, George Karapetsas, M. Pavlidis
We examine the buoyancy-driven rise of a bubble in a Newtonian or a viscoplastic fluid assuming axial symmetry and steady flow. Bubble pressure and rise velocity are determined, respectively, by requiring that its volume remains constant and its centre of mass remains fixed at the centre of the coordinate system. The continuous constitutive model suggested by Papanastasiou is used to describe the viscoplastic behaviour of the material. The flow equations are solved numerically using the mixed finite-element/Galerkin method. The nodal points of the computational mesh are determined by solving a set of elliptic differential equations to follow the often large deformations of the bubble surface. The accuracy of solutions is ascertained by mesh refinement and predictions are in very good agreement with previous experimental and theoretical results for Newtonian fluids. We determine the bubble shape and velocity and the shape of the yield surfaces for a wide range of material properties, expressed in terms of the Bingham Bn=$\tau_y^{\ast}/\rho^{\ast}g^{\ast} R_b^{\ast}$ Bond Bo =$\rho^{\ast}g^{\ast} R_b^{\ast 2}/\gamma^{\ast}$ and Archimedes Ar=$\rho^{\ast2}g^{\ast} R_b^{\ast3}/\mu_o^{\ast2}$ numbers, where ρ* is the density, μ*o the viscosity, γ* the surface tension and τ*y the yield stress of the material, g* the gravitational acceleration and R*b the radius of a spherical bubble of the same volume. If the fluid is viscoplastic, the material will not be deforming outside a finite region around the bubble and, under certain conditions, it will not be deforming either behind it or around its equatorial plane in contact with the bubble. As Bn increases, the yield surfaces at the bubble equatorial plane and away from the bubble merge and the bubble becomes entrapped. When Bo is small and the bubble cannot deform from the spherical shape the critical Bn is 0.143, i.e. it is a factor of 3/2 higher than the critical Bn for the entrapment of a solid sphere in a Bingham fluid, in direct correspondence with the 3/2 higher terminal velocity of a bubble over that of a sphere under the same buoyancy force in Stokes flow. As Bo increases allowing the bubble to squeeze through the material more easily, the critical Bingham number increases as well, but eventually it reaches an asymptotic value. Ar affects the critical Bn value much less.
The competition between gravity and flow focusing in two-layered porous media
Journal of Fluid Mechanics - Tập 720 - Trang 5-14 - 2013
Herbert E. Huppert, Jerome A. Neufeld, Charlotte Strandkvist
AbstractThe gravitationally driven flow of a dense fluid within a two-layered porous media is examined experimentally and theoretically. We find that in systems with two horizontal layers of differing permeability a competition between gravity driven flow and flow focusing along high-permeability routes can lead to two distinct flow regimes. When the lower layer is more permeable than the upper layer, gravity acts along high-permeability pathways and the flow is enhanced in the lower layer. Alternatively, when the upper layer is more permeable than the lower layer, we find that for a sufficiently small input flux the flow is confined to the lower layer. However, above a critical flux fluid preferentially spreads horizontally within the upper layer before ultimately draining back down into the lower layer. This later regime, in which the fluid overrides the low-permeability lower layer, is important because it enhances the mixing of the two fluids. We show that the critical flux which separates these two regimes can be characterized by a simple power law. Finally, we briefly discuss the relevance of this work to the geological sequestration of carbon dioxide and other industrial and natural flows in porous media.
Linear and nonlinear modelling of a theoretical travelling-wave thermoacoustic heat engine
Journal of Fluid Mechanics - Tập 766 - Trang 368-404 - 2015
Carlo Scalo, Sanjiva K. Lele, Lambertus Hesselink
AbstractWe have carried out three-dimensional Navier–Stokes simulations, from quiescent conditions to the limit cycle, of a theoretical travelling-wave thermoacoustic heat engine (TAE) composed of a long variable-area resonator shrouding a smaller annular tube, which encloses the hot (HHX) and ambient (AHX) heat exchangers, and the regenerator (REG). Simulations are wall-resolved, with no-slip and adiabatic conditions enforced at all boundaries, while the heat transfer and drag due to the REG and HXs are modelled. HHX temperatures have been investigated in the range 440–500 K with the AHX temperature fixed at 300 K. The initial exponential growth of acoustic energy is due to a network of travelling waves thermoacoustically amplified by looping around the REG/HX unit in the direction of the imposed temperature gradient. A simple analytical model demonstrates that such instability is a localized Lagrangian thermodynamic process resembling a Stirling cycle. An inviscid system-wide linear stability model based on Rott’s theory is able to accurately predict the operating frequency and the growth rate, exhibiting properties consistent with a supercritical Hopf bifurcation. The limit cycle is governed by acoustic streaming – a rectified steady flow resulting from high-amplitude nonlinear acoustics. Its key features are explained with an axially symmetric incompressible model driven by the wave-induced stresses extracted from the compressible calculations. These features include Gedeon streaming, Rayleigh streaming in the resonator, and mean recirculations due to flow separation. The first drives the mean advection of hot fluid from the HHX to a secondary heat exchanger (AHX2), in the thermal buffer tube (TBT), necessary to achieve saturation of the acoustic energy growth. The direct evaluation of the nonlinear energy fluxes reveals that the efficiency of the device deteriorates with the drive ratio and that the acoustic power in the TBT is balanced primarily by the mean advection and thermoacoustic heat transport.
Sedimentation in a dilute dispersion of spheres
Journal of Fluid Mechanics - Tập 52 Số 2 - Trang 245-268 - 1972
G. K. Batchelor
The dispersion considered consists of a large number of identical small rigid spheres with random positions which are falling through Newtonian fluid under gravity. The volume fraction of the spheres (c) is small compared with unity. The dispersion is statistically homogeneous, and the axes of reference are chosen so that the mean volume flux across any stationary surface is zero. The problem is to determine the mean value of the velocity of a sphere (U). In §3 there is described a systematic and rigorous procedure which overcomes the familiar difficulty presented by the occurrence of divergent integrals, essentially by the choice of a quantity V whose mean value can be found exactly and which has the same long-range dependence on the position of a second sphere as U so that the mean of U – V can be expressed in terms of an absolutely convergent integral. The result is that, correct to order c, the mean value of U is U0(1 – 6.55 c), where U0, is the velocity of a single sphere in unbounded fluid. The only assumption made in the calculation is that the centres of spheres in the dispersion take with equal probability all positions such that no two spheres overlap; arguments are given in support of this assumption, which is expected to be valid only when the spheres are identical. Calculations which assume a simple regular arrangement of the spheres or which adopt a cell model of the hydrodynamic interactions give the quite different result that the change in the mean speed of fall is proportional to $c^{\frac{1}{3}}$, for reasons which are made clear.The general procedure described here is expected to be applicable to other problems concerned with the effect of particle interactions on the average properties of dispersions with small volume fraction of the particles.
Brownian diffusion of particles with hydrodynamic interaction
Journal of Fluid Mechanics - Tập 74 Số 1 - Trang 1-29 - 1976
G. K. Batchelor
The classical theory of Brownian motion applies to suspensions which are so dilute that each particle is effectively alone in infinite fluid. We consider here the modifications to the theory that are needed when rigid spherical particles are close enough to interact hydrodynamically. It is first shown that Brownian motion is a diffusion process of the conventional kind provided that the particle configuration does not change significantly during a viscous relaxation time. The original argument due to Einstein, which invokes an equilibrium situation, is generalized to show that the particle flux in probability space due to Brownian motion is the same as that which would be produced by the application of a certain ‘thermodynamic’ force to each particle. We then use this prescription to deduce the Brownian diffusivities in two different types of situation. The first concerns a dilute homogeneous suspension which is being deformed, and the relative translational diffusivity of two rigid spherical particles with a given separation is calculated from the properties of the low-Reynolds-number flow due to two spheres moving under equal and opposite forces. The second concerns a suspension in which there is a gradient of concentration of particles. The thermodynamic force on each particle in this case is shown to be equal to the gradient of the chemical potential of the particles, which brings considerations of the multi-particle excluded volume into the problem. Determination of the particle flux due to the action of this force is equivalent to determination of the sedimentation velocity of particles falling through fluid under gravity, for which a theoretical result correct to the first order in volume fraction of the particles is available. The diffusivity of the particles is found to increase slowly as the concentration rises from zero. These results are generalized to the case of a (dilute) inhomogeneous suspension of several different species of spherical particle, and expressions are obtained for the diagonal and off-diagonal elements of the diffusivity matrix. Numerical values of all the relevant hydrodynamic functions are given for the case of spheres of uniform size.
Effect of serrated trailing edges on aerofoil tonal noise
Journal of Fluid Mechanics - Tập 904 - 2020
Matthieu Bernard Roger Gelot, Jae Wook Kim
Abstract
Creeping plumes
Journal of Fluid Mechanics - Tập 158 - Trang 511-531 - 1985
Peter Olson, Harvey S. Singer
Results of laboratory experiments are used to determine the morphology and the ascent rate of growing buoyant plumes in a homogeneous, viscous fluid. The plumes were formed by injecting a glucose solution through a small orifice into another glucose solution of different density. Two classes of creeping (low-Reynolds-number) plumes are investigated: (i) diapiric plumes, for which the plume viscosity is approximately equal to the ambient-fluid viscosity, and (ii) cavity plumes, for which the plume fluid is much less viscous than the ambient fluid. Fully developed diapirs consist of a tapered cylindrical stem capped by a mushroom-shaped vortex at its leading edge. Fully developed cavity plumes consist of a nearly spherical chamber connected to the source by a narrow umbilical conduit. It is observed that the ascent velocity of cavity plumes increases with time as t. The ascent velocity of diapirs is found to be proportional to the terminal velocity of a cylinder moving parallel to its axis. The presence of pre-existing conduits alters the morphology of cavity plumes and greatly increases their ascent rate. Fossil conduits act as plume guides by offering low-resistance ascent paths. Finally, a series of experiments have been made on the interaction between cavity plumes and a large-scale background circulation. A low-viscosity plume generated by a source towed steadily through a highly viscous fluid breaks into a chain of regularly spaced, individual cavities, as first demonstrated by Skilbeck & Whitehead. The cavities ascend as an inclined linear array of Stokes droplets. Dimensional analysis is used to derive scaling laws for the cavity volumes and their replication rate in terms of the source parameters and the tow speed. The qualitative results from these experiments generally lend support to the hypothesis that buoyant plumes in the Earth's mantle are the source of hot-spot volcanism. In particular the experiments suggest an explanation for the observation that hot spots remain nearly fixed in the presence of mantle convection.
Tổng số: 190   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 19