Bounds for threshold amplitudes in subcritical shear flows

Journal of Fluid Mechanics - Tập 270 - Trang 175-198 - 1994
Gunilla Kreiss1, Anders Lundbladh2, Dan S. Henningson2
1Department of Numerical Analysis and Computer Science, Royal Institute of Technology, S-100 44 Stockholm, Sweden
2Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden and The Aeronautical Research Institute of Sweden (FFA), Box 11021, S-161 11 Bromma, Sweden

Tóm tắt

A general theory which can be used to derive bounds on solutions to the Navier-Stokes equations is presented. The behaviour of the resolvent of the linear operator in the unstable half-plane is used to bound the energy growth of the full nonlinear problem. Plane Couette flow is used as an example. The norm of the resolvent in plane Couette flow in the unstable half-plane is proportional to the square of the Reynolds number (R). This is now used to predict the asymptotic behaviour of the threshold amplitude below which all disturbances eventually decay. A lower bound is found to be R−21/4. Examples, obained through direct numerical simulation, give an upper bound on the threshold curve, and predict a threshold of R−1. The discrepancy is discussed in the light of a model problem.

Từ khóa


Tài liệu tham khảo

Henningson, D. S. , Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition from localized disturbances in wall-bounded shear flows.J. Fluid Mech. 250,169–207.

Kreiss, G. , Kreiss, H.-O. & Petersson, N. A. 1992 On the convergence to steady state of solutions of nonlinear hyperbolic-parabolic systems. TRITA-NA 9221 .Royal Institute of Technology,Stockholm, Sweden.

Henningson, D. S. & Schmid, P. J. 1992 Vector eigenfunction expansions for plane channel flows.Stud. Appl. Maths 87,15–43.

Gustavsson, L. H. & Hultgren, L. S. 1980 A resonance mechanism in plane Couette flow.J. Fluid Mech. 98,149–159.

Herbert, T. 1983 On perturbation methods in nonlinear stability theory.J. Fluid Mech. 126,167–186.

Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity.J. Fluid Mech. 217,519–527.

Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: A perfect liquid. Part II: A viscous liquid.Proc. R. Irish Acad. A 27,9–138.

DiPrima, R. C. & Habetler, G. J. 1969 A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability.Arch. Rat. Mech. Anal. 32,218–227.

Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterion.Phil. Trans. R. Lond. Soc. A 186,123–164.

Serrin, J. 1959 On the stability of viscous fluid motions.Arch. Rat. Mech. Anal. 3,1–13.

Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows.J. Fluid Mech. 252,209–238.

Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette flow.J. Fluid Mech. 229,499–516.

Joseph, D. D. 1976 Stability of Fluid Motions I. Springer.

Schmid, P. J. & Henningson, D. S. 1992 A new mechanism for rapid transition involving a pair of oblique waves.Phys. Fluids A 4,1986–1989.

Herron, I. H. 1991 Observations on the role of vorticity in the stability of wall bounded flows.Stud. Appl. Maths 85,269–286.

Stuart, J. T. 1960 On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part I. The basic behaviour in plane Poiseuille flow.J. Fluid Mech. 9,353–370.

Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow.Phys. Fluids A 4,1637–1650.

Kato, T. 1976 Perturbation Theory for Linear Operators .Springer.

Yudovich, V. I. 1989 The Linearization Method in Hydrodynamical Stability Theory .American Mathematical Society.

Romanov, V. A. 1973 Stability and plane-parallel Couette flow.Funkcional Anal. i Proložen. 7(2),72–73. (Translated in Functional Anal. Applics. 7, 137–146 (1973).)

Zahn, J. P. , Toomre, J. , Spiegel, E. A. & Gough, D. O. 1974 Nonlinear cellular motions in Poiseuille channel flow.J. Fluid Mech. 64,319–345.

Lundbladh, A. , Henningson, D. S. & Johansson, A. V. 1992 An efficient spectral integration method for the solution of the Navier—Stokes equations. FFA-TN 1992-28 .Aeronautical Research Institute of Sweden,Bromma.

Kim, J. , Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow.J. Fluid Mech. 177,133–166.

Meksyn, D. & Stuart, J. T. 1951 Stability of viscous motion between parallel planes for finite disturbances.Proc. R. Soc. Lond. A 208,517–526.

Tillmark, N. & Alfredsson, P. H. 1992 Experiments on transition in plane Couette flow.J. Fluid Mech. 235,89–102.

Willke, L. H. 1967 Stability in time-symmetric flows.J. Math. Phys. 46,151–163.

Ellingsen, T. & Palm, E. 1975 Stability of linear flow.Phys. Fluids 18,487–488.

Kreiss, H.-O. & Lorenz, J. 1989 Initial-Boundary Value Problems and the Navier—Stokes Equations .Academic.

Joseph, D. D. 1965 On the stability of the Boussinesq equations.Arch. Rat. Mech. Anal. 20,59–71.

Joseph, D. D. 1966 Nonlinear stability of the Boussinesq equations by the energy method.Arch. Rat. Mech. Anal. 22,163–184.

Grohne, D. 1969 Die Stabilität der ebenen Kanalströmung gegenüber dreidimensionalen Störungen von endlicher Amplitude.AVA Göttingen Rep. 69 A 30.

Galdi, G. P. & Straughan, B. 1985 Exchange of stabilities, symmetry, and nonlinear stability.Arch. Rat. Mech. Anal. 89,211–228.

Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow.J. Fluid Mech. 224,241–260.

Malkus, W. V. R. & Veronis, G. 1958 Finite amplitude cellular convection.J. Fluid Mech. 4,225–260.

Watson, J. 1960 On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille and for plane Couette flow.J. Fluid Mech. 9,371–389.

Greengard, L. 1991 Spectral integration and two-point boundary value problems.SIAM J. Numer. Anal. 28,1071–1080.

Henningson, D. S. 1991 An eigenfunction expansion of localized disturbances. In Advances in Turbulence 3 (ed. A. V. Johansson & P. H. Alfredsson ), pp162–169.Springer.

Reddy, S. C. , Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr-Sommerfeld operator.SIAM J. Appl. Maths 53,15–47.

Cowley, S. J. & Smith, F. T. 1985 On the stability of Poiseuille-Couette flow: a bifurcation from infinity.J. Fluid Mech. 156,83–100.

Trefethen, L. N. , Trefethen, A. E. , Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues.Science 261,578–584.

Davis, S. H. 1969 Buoyancy-surface tension instability by the method of energy.J. Fluid Mech. 39,347–359.

Ehrenstein, U. & Koch, W. 1991 Three-dimensional wavelike equilibrium states in plane Poiseuille flow.J. Fluid Mech. 228,111–148.

Gor’kov, L. P. 1957 Stationary convection in a plane liquid layer near the critical heat transfer point.Zh. Eksp. Teor. Fiz. 33,402–407. (Translated in Sov. Phys. JETP 6, 311–315 (1958).)