Invertebrate Neuroscience
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits?
Invertebrate Neuroscience - Tập 9 - Trang 57-75 - 2009
Neuropeptide signaling is functionally very diverse and one and the same neuropeptide may act as a circulating neurohormone, as a locally released neuromodulator or even as a cotransmitter of classical fast-acting neurotransmitters. Thus, neuropeptides are produced by a huge variety of neuron types in different parts of the nervous system. Within the central nervous system (CNS) there are numerous types of peptidergic interneurons, some with strictly localized and patterned branching morphologies, others with widespread and diffuse arborizations. From morphology alone it is often difficult to predict the sphere of influence of a peptidergic interneuron, especially since it has been shown that neuropeptides can diffuse over tens of micrometers within neuropils, and that peptides probably are released exclusively in perisynaptic (or non-synaptic) regions. This review addresses some questions related to peptidergic signaling in the insect CNS. How diverse are the spatial relations between peptidergic neurons and their target neurons and what determines the sphere of functional influence? At one extreme there is volume transmission and at the other targeted cotransmission at synapses. Also temporal aspects of peptidergic signaling are of interest: how transient are peptidergic messages? Factors important for these spatial and temporal aspects of peptidergic signaling are proximity between release sites and cognate receptors, distribution of peptidase activity that can terminate peptide action and colocalization of other neuroactive compounds in the presynaptic peptidergic neuron (and corresponding receptors in target neurons). Other factors such as expression of different channel types, receptor inactivation mechanisms and second messenger systems probably also contribute to the diversity in temporal properties of peptide signaling.
Effect of hydrogen peroxide on electrical coupling between identified Lymnaea neurons
Invertebrate Neuroscience - Tập 12 - Trang 63-68 - 2012
The pair of giant reciprocally coupled neurons VD1 and RPaD2 within the CNS of the freshwater pond snail Lymnaea stagnalis was used to analyse the effect of hydrogen peroxide on gap-junction connection. Electrical activity of VD1/RPaD2 was recorded with intracellular microelectrodes in order to analyse gap-junction signalling. Hydrogen peroxide application (1 × 10−4 M) results in a rapid, 1.3-fold, increase in VD1/RPaD2 spiking frequency within 30 s after application. This was accompanied by a slight reduction in action potential amplitude. In addition, H2O2 induced a significant reduction in the steady-state bidirectional coupling ratio between the neurons. The maximal reduction in the coupling ratio, 1.8–1.9 fold, was measured 3 min after H2O2 application. However, the network input resistance did not undergo a detectable change. The voltage-gated Ca2+ channel blocker, nifedipine (1 × 10−4 M), abolished the effect of H2O2 on the coupling ratio and firing frequency. All the effects of H2O2 were reversible, that is, washing the preparation with standard physiological saline restored the properties of the neuronal coupling to the pre-treatment value. These data are consistent with a dynamic modulation of the gap-junction properties by H2O2 between these two neurons.
Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa)
Invertebrate Neuroscience - Tập 10 - Trang 77-91 - 2010
In planula larvae of the invertebrate Hydractinia echinata (Cnidaria, Hydrozoa), peptides of the GLWamide and the RFamide families are expressed in distinct subpopulations of neurons, distributed in a typical spatial pattern through the larval body. However, in the adult polyp GLWamide or RFamide-expressing cells are located at body parts that do not correspond to the prior larval regions. Since we had shown previously that during metamorphosis a large number of cells are removed by programmed cell death (PCD), we aimed to analyze whether cells of the neuropeptide-expressing larval nerve net are among those sacrificed. By immunohistochemical staining and in situ hybridization, we labeled GLWamide- and RFamide-expressing cells. Double staining of neuropeptides and degraded DNA (TUNEL analysis) identified some neurosensory cells as being apoptotic. Derangement of the cytoplasm and rapid destruction of neuropeptide precursor RNA indicated complete death of these particular sensory cells in the course of metamorphosis. Additionally, a small group of RFamide-positive sensory cells in the developing mouth region of the primary polyp could be shown to emerge by proliferation. Our results support the idea that during metamorphosis, specific parts of the larval neuronal network are subject to neurodegeneration and therefore not used for construction of the adult nerve net. Most neuronal cells of the primary polyp arise by de novo differentiation of stem cells commited to neural differentiation in embryogenesis. At least some nerve cells derive from proliferation of progenitor cells. Clarification of how the nerve net of these basal eumetazoans degenerates may add information to the understanding of neurodegeneration by apoptosis as a whole in the animal kingdom.
Electrophysiological recording from parasitic nematode muscle
Invertebrate Neuroscience - Tập 8 - Trang 167-175 - 2008
Infection of man and animals with parasitic nematodes is recognized as a significant global problem (McLeod in Int J Parasitol 25(11):1363–1367, 1994; Hotez et al. in N Engl J Med 357(10):1018–1027, 2007). At present control of these infections relies primarily on chemotherapy. There are a limited number of classes of anthelmintic compounds and the majority of these act on ion-channels of the parasite (Martin et al. in Parasitology 113:S137–S156, 1996). In this report, we describe electrophysiological recording techniques as applied to parasitic nematodes. The aim of this report is: (1) to promote the study of ion channels in nematodes to help further the understanding of antinematodal drug action; (2) to describe our recording equipment and experimental protocols; and (3) provide some examples of the information to be gleaned from this approach and how it can increase our understanding of these important pathogens.
The dual effect of enflurane on gill withdrawal reflex ofAplysia
Invertebrate Neuroscience - Tập 2 - Trang 35-40 - 1996
Superfusion of clinical concentrations of enflurane (0.5% or 1.0%), an inhalation anaesthetic, over the abdominal ganglion ofAplysia significantly affected the amplitude of the gill withdrawal reflex evoked by tactile stimulation of the siphon. Enflurane superfusion (0.5%) suppressed the gill withdrawal reflex amplitude (to 46.1% of control; P<0.001 vs control) in eight of ten experiments. In the remaining two experiments, enflurane superfusion of the abdominal ganglion significantly facilitated the gill withdrawal reflex amplitude (174.5% of control;P<0.01). In addition, enflurane superfusion significantly reduced the number of action potentials evoked in central gill motor neurons by the siphon stimulation (to 47.1% of control;P<0.01) in six out of nine experiments. In one of the remaining three experiments, enflurane increased the number of action potentials evoked by the stimulus (to 200.0% of control). In two of the three, enflurane did not alter the numbet of action potentials. Behavioural responses were ‘uncoupled’ from the neuronal responses as a result of enflurane superfusion.
Synaptic plasticity in cephalopods; more than just learning and memory?
Invertebrate Neuroscience - Tập 13 - Trang 35-44 - 2013
The outstanding behavioural capacity of cephalopods is underpinned by a highly sophisticated nervous system anatomy and neural mechanisms that often differ significantly from similarly complex systems in vertebrates and insects. Cephalopods exhibit considerable behavioural flexibility and adaptability, and it might be expected that this should be supported by evident cellular and synaptic plasticity. Here, we review what little is known of the cellular mechanisms that underlie plasticity in cephalopods, particularly from the point of view of synaptic function. We conclude that cephalopods utilise short-, medium-, and long-term plasticity mechanisms that are superficially similar to those so far described in vertebrate and insect synapses. These mechanisms, however, often differ significantly from those in other animals at the biophysical level and are deployed not just in the central nervous system, but also to a limited extent in the peripheral nervous system and neuromuscular junctions.
A biphasic dopaminergic modulation of the high voltage-activated Ba2+ current of identified snail neurons
Invertebrate Neuroscience - Tập 2 - Trang 199-208 - 1996
We have investigated the intracellular mechanisms by which dopamine induced a biphasic modulation of the Ba2+ current amplitude through the high voltage-activated Ca2+ channel (HVA-IBa) in identifiedHelix aspersa neurons. We used the two electrode voltage clamp technique on a group of identified neurons of the right parietal ganglionin situ, and the whole cell patch clamp technique on these same neurons in primary culture. Brief application of dopamine induced an initial fast reduction of the HVA-IBa followed by a slower enhancement of HVA-IBa. This enhancement was not due to a shift of the current-voltage curve. Repetitive application of dopamine did not attenuate this phase of the response. During longer application, the inhibition began to ‘sag’ and returned towards control levels. These results indicate that the enhancement was not due to a desensitization of the receptor or a relief from tonic G-protein mediated inhibition of the current. Manipulations of the levels of intracellular second messengers such as Ca2+, cGMP, cAMP, and arachidonic acid, as well as inhibition of protein kinases and phosphatases, had no effect on the dopamine induced biphasic effect on HVA-IBa. Pertussis toxin added to the patch pipette had a slow but simultaneous blocking effect on both phases of the dopamine action on HVA-IBa. Since our results show that pertussis toxin affects both phases of the dopamine action on this current, we suggest that both phases of the dopamine action on HVA-IBa are mediated by a pertussis toxin-sensitive G-protein. If a second messenger is implicated, it is none of the ‘classical’ second messenger systems.
Knockout of PINK1 altered the neural connectivity of Drosophila dopamine PPM3 neurons at input and output sites
Invertebrate Neuroscience - Tập 20 - Trang 1-9 - 2020
Impairment of the dopamine system is the main cause of Parkinson disease (PD). PTEN-induced kinase 1 (PINK1) is possibly involved in pathogenesis of PD. However, its role in dopaminergic neurons has not been fully established yet. In the present investigation, we have used the PINK1 knockout Drosophila model to explore the role of PINK1 in dopaminergic neurons. Electrophysiological and behavioral tests indicated that PINK1 elimination enhances the neural transmission from the presynaptic part of dopaminergic neurons in the protocerebral posterior medial region 3 (PPM3) to PPM3 neurons (which are homologous to those in the substantia nigra in humans). Firing properties of the action potential in PPM3 neurons were also altered in the PINK1 knockout genotypes. Abnormal motor ability was also observed in these PINK1 knockout animals. Our results indicate that knockout of PINK1 could alter both the input and output properties of PPM3 neurons.
“The Natural History of the Crustacea”: Volume 3, “Nervous Systems and Control of Behavior,” edited by Charles Derby and Martin Thiel, and Volume 4 “Physiology,” edited by Ernest Chang and Martin Thiel
Invertebrate Neuroscience - Tập 15 - Trang 1-2 - 2015
In these handsomely produced new volumes in “The Natural History of the Crustacea” series (series editor Martin Thiel), the Editors have assembled a comprehensive and authoritative series of reviews exploring all aspects of the neurobiology and physiology of crustaceans.
Expression and genetic variation of theAplysia egg-laying hormone gene family in the atrial gland
Invertebrate Neuroscience - Tập 2 - Trang 261-271 - 1997
We have screened anAplysia atrial gland cDNA library using an egg-laying hormone (ELH) precursor probe and have isolated and characterized five different clones, four of which are full-length and approximately 0.8 kb in size. The characterization of these cDNA clones firmly established the genetic variation of the ELH-related precursors expressed in the atrial gland and provided a rational basis for their revised nomenclature proposed herein. The five precursor ELH-related cDNA sequences obtained predicted the following genetically distinct polypeptide precursors designated as: A, [Asp143]A, [Glu94,Gln139]A, [Pro25]B, and [Phe96,Asp107]Bt. The [Phe96,Asp107]Bt cDNA sequence predicted a truncated form of a B-type precursor. Northern blot analysis of atrial gland RN A identified two transcripts of about equal intensity of 0.9 kb and 1.1kb. Polymerase chain reaction of genomic DNA, together with DNA sequence analysis, resolved previously reported discrepancies between genomic and cDNA sequences of the ELH-related precursors. Taken together the results obtained identified the expression of five ELH-related precursor genes in the atrial gland ofAplysia from at least two genetic loci per haploid genome.
Tổng số: 275
- 1
- 2
- 3
- 4
- 5
- 6
- 10