Molecular identification and expression of the NMDA receptor NR1 subunit in the leech
Tóm tắt
The N-methyl-d-aspartate receptor (NMDAR) is involved in a number of physiological and pathophysiological processes in vertebrates, but there have been few studies examining the role of invertebrate NMDA receptors. In the leech, pharmacological evidence suggests that NMDARs contribute to synaptic plasticity, but there has been no molecular identification of NMDA receptors. In this report, a partial cDNA encoding the leech NR1 subunit of the NMDA receptor (HirNR1) is presented. Reverse transcriptase-polymerase chain reaction from single neurons of the leech central nervous system confirms HirNR1 expression in the Retzius (R), Anterior Pagoda (AP), Pressure (P), and Touch (T) neurons. Immunoblotting with an anti-NR1 antibody yielded a ~110 kDa protein, similar to the expected weight of the NR1 subunit (~116 kDa). Finally, pairing pre- and postsynaptic activity elicited long-term potentiation in synapses between neurons expressing NR1 mRNA (P-to-AP synapse) and this potentiation was blocked by the NMDAR antagonist AP5.
Tài liệu tham khảo
Abraham WC, Tate WP (1997) Metaplasticity: a new vista across the field of synaptic plasticity. Prog Neurobiol 52:303–323. doi:10.1016/S0301-0082(97)00018-X
Antonov I, Antonova I, Kandel ER, Hawkins RD (2001) The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia. J Neurosci 21:6413–6422
Baccus SA (1998) Synaptic facilitation by reflected action potentials: enhancement of transmission when nerve impulses reverse direction at axon branch points. Proc Natl Acad Sci USA 95:8345–8350. doi:10.1073/pnas.95.14.8345
Blackshaw SE, Henderson LP, Malek J, Porter DM, Gross RH, Angstadt JD, Levasseur SM, Maue RA (2003) Single-cell analysis reveals cell-specific patterns of expression of a family of putative voltage-gated sodium channel genes in the leech. J Neurobiol 55:355–371. doi:10.1002/neu.10214
Brockie PJ, Mellem JE, Hills T, Madsen DM, Maricq AV (2001) The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31:617–630. doi:10.1016/S0896-6273(01)00394-4
Brodfuehrer PD, Cohen AH (1990) Initiation of swimming activity in the medicinal leech by glutamate, quisqualate and kainate. J Exp Biol 154:567–572
Burrell BD, Sahley CL (2001) Learning in simple systems. Curr Opin Neurobiol 11:757–764. doi:10.1016/S0959-4388(01)00281-1
Burrell BD, Sahley CL (2004) Multiple forms of long-term potentiation and long-term depression converge on a single interneuron in the leech CNS. J Neurosci 24:4011–4019. doi:10.1523/JNEUROSCI.0178-04.2004
Burrell BD, Sahley CL (2005) Serotonin mediates learning-induced potentiation of excitability. J Neurophysiol 94:4002–4010. doi:10.1152/jn.00432.2005
Burrell BD, Sahley CL, Muller KJ (2001) Non-associative learning and serotonin induce similar bi-directional changes in excitability of a neuron critical for learning in the medicinal leech. J Neurosci 21:1401–1412
Cox JA, Kucenas S, Voigt MM (2005) Molecular characterization and embryonic expression of the family of N-methyl-d-aspartate receptor subunit genes in the zebrafish. Dev Dyn 234:756–766. doi:10.1002/dvdy.20532
Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61
Dorner R, Ballanyi K, Schlue WR (1990) Glutaminergic responses of neuropile glial cells and Retzius neurons in the leech central nervous system. Brain Res 523:111–116. doi:10.1016/0006-8993(90)91642-T
Dumas TC (2005) Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol 76:189–211. doi:10.1016/j.pneurobio.2005.08.002
Fedorov A, Johnston H, Korneev S, Blackshaw S, Davies J (1999) Cloning, characterisation and expression of the alpha-tubulin genes of the leech, Hirudo medicinalis. Gene 227:11–19. doi:10.1016/S0378-1119(98)00603-9
Ferrer-Montiel AV, Sun W, Montal M (1995) Molecular design of the N-methyl-d-aspartate receptor binding site for phencyclidine and dizolcipine. Proc Natl Acad Sci USA 92:8021–8025. doi:10.1073/pnas.92.17.8021
Foldes RL, Adams SL, Fantaske RP, Kamboj RK (1994) Human N-methyl-d-aspartate receptor modulatory subunit hNR2A: cloning and sequencing of the cDNA and primary structure of the protein. Biochim Biophys Acta 1223:155–159. doi:10.1016/0167-4889(94)90086-8
Glantz RM, Pfeiffer-Linn C (1992) NMDA receptors in invertebrates. Comp Biochem Physiol 103C:243–248
Grey KB, Burrell BD (2008) Forskolin induces NMDA receptor-dependent potentiation at a central synapse in the leech. J Neurophysiol 99:2719–2724. doi:10.1152/jn.00010.2008
Groome JR, Vaughan DK (1996) Glutamate as a transmitter in the sensory pathway from prostomal lip to serotonergic Retzius neurons in the medicinal leech Hirudo. Invert Neurosci 2:121–128. doi:10.1007/BF02214115
Ha TJ, Kohn AB, Bobkova YV, Moroz LL (2006) Molecular characterization of NMDA-like receptors in Aplysia and Lymnaea: relevance to memory mechanisms. Biol Bull 210:255–270. doi:10.2307/4134562
Hollmann M (1999) Structure of ionotropic glutamate receptors. In: Jonas P, Monyer H (eds) Ionotropic glutamate receptors in the CNS. Springer, Berlin, pp 1–98
James VA, Walker RJ, Wheal HV (1980) Structure-activity studies on an excitatory receptor for glutamate on leech Retzius neurones. Br J Pharmacol 68:711–717
Jellies J, Johansen J (1995) Multiple strategies for directed growth cone extension and navigation of peripheral neurons. J Neurobiol 27:310–325. doi:10.1002/neu.480270305
Karp SJ, Masu M, Eki T, Ozawa K, Nakanishi S (1993) Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-d-aspartate receptor. J Biol Chem 268:3728–3733
Kopp C, Longordo F, Lüthi A (2007) Experience-dependent changes in NMDA receptor composition at mature central synapses. Neuropharmacology 53:1–9. doi:10.1016/j.neuropharm.2007.03.014
Kristan WB Jr, Eisenhart FJ, Johnson LA, French KA (2000) Development of neuronal circuits and behaviors in the medicinal leech. Brain Res Bull 53:561–570. doi:10.1016/S0361-9230(00)00390-7
Kristan WB Jr, Calabrese RL, Friesen WO (2005) Neuronal control of leech behavior. Prog Neurobiol 76:279–327. doi:10.1016/j.pneurobio.2005.09.004
Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: Physiological properties and neuron-glia relationship. J Neurophysiol 27:290–320
Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300. doi:10.1016/0896-6273(94)90445-6
Levine M, Macagno E (1990) Segmentation and segmental differentiation in the development of the central nervous systems of leeches and flies. Annu Rev Neurosci 13:195–225. doi:10.1146/annurev.ne.13.030190.001211
Li Q, Burrell BD (2007) Two forms of LTD: One NMDA-R/mGluR dependent and the other 5HT receptor dependent. Soc Neurosci Abstr 47.10
Lin XY, Glanzman DL (1997) Effect of interstimulus interval on pairing-inducing LTP of Aplysia sensorimotor synapses in cell culture. J Neurophysiol 77:667–674
Malek JA (2004) Voltage-gated sodium channels and nerve regeneration in the leech. D.Phil. Thesis. University of Oxford
Mat Jais AM, Sharma RP, Kerkut GA, Walker RJ (1984) The halomethylketone derivative l-Glu-gamma-dl-Ala-CH2CL and N-methyl-d-aspartate as selective antagonists against l-glutamate and kainite excitation respectively on Retzius cells of the leech, Hirudo medicinalis. Comp Biochem Physiol C 77:385–398. doi:10.1016/0742-8413(84)90033-1
Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74. doi:10.1038/357070a0
Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221. doi:10.1126/science.256.5060.1217
Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37. doi:10.1038/354031a0
Murphy GG, Glanzman DL (1997) Mediation of classical conditioning in Aplysia californica by long-term potentiation of sensorimotor synapses. Science 278:467–471. doi:10.1126/science.278.5337.467
Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533. doi:10.1016/S0022-3956(99)00029-1
Otmaknov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J (2004) Forskolin-induced LTP in the CA1 hippocampal region is NMDA Receptor dependent. J Neurophysiol 91:1955–1962. doi:10.1152/jn.00941.2003
Roberts AC, Glanzman DL (2003) Learning in Aplysia: looking at synaptic plasticity from both sides. Trends Neurosci 26:662–670. doi:10.1016/j.tins.2003.09.014
Sahley CL (1994) Serotonin-depletion impairs but does not eliminate classical conditioning in the leech Hirudo medicinalis. Behav Neurosci 108:1043–1052. doi:10.1037/0735-7044.108.6.1043
Sahley CL, Boulis NM, Schurman B (1994) Associative learning modifies the shortening reflex in the semi-intact leech Hirudo medicinalis: effects of paring, predictability, and CS preexposure. Behav Neurosci 108:340–346. doi:10.1037/0735-7044.108.2.340
Siegel SJ, Brose N, Janssen WG, Gasic GP, Jahn R, Heinemann SF, Morrison JH (1994) Regional, cellular, and ultrastructural distribution of N-methyl-d-aspartate receptor subunit 1 in monkey hippocampus. Proc Natl Acad Sci USA 91:564–568. doi:10.1073/pnas.91.2.564
Soloviev MM, Brierley MJ, Shao ZY, Mellor IR, Volkova TM, Kamboj R, Ishimaru H, Sudan H, Harris J, Foldes RL, Grishin EV, Usherwood PN, Barnard EA (1996) Functional expression of a recombinant unitary glutamate receptor from Xenopus, which contains N-methyl-d-aspartate (NMDA) and non-NMDA receptor subunits. J Biol Chem 271:32572–32579. doi:10.1074/jbc.271.51.32572
Thorogood MSE, Almeida VW, Brodfuehrer PD (1999) Glutamate receptor 5/6/7-like and glutamate transporter-1-like immunoreactivity in the leech central nervous system. J Comp Neurol 405:334–344. doi:10.1002/(SICI)1096-9861(19990315)405:3<334::AID-CNE4>3.0.CO;2-I
Ultsch A, Schuster CM, Laube B, Betz H, Schmitt B (1993) Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS Lett 324:171–177. doi:10.1016/0014-5793(93)81387-F
Weisblat DA (2007) Asymmetric cell divisions in the early embryo of the leech Helobdella robusta. Prog Mol Subcell Biol 45:79–95. doi:10.1007/978-3-540-69161-74
Wessel R, Kristan WB, Kleinfeld D (1999) Supralinear summation of synaptic inputs by an invertebrate neuron: Dendritic gain is mediated by an “inward rectifier” K+ current. J Neurosci 19:5875–5888
Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097. doi:10.1126/science.1128134
Williams K, Pahk AJ, Kashiwagi K, Masuko T, Nguyen ND, Igarashi K (1998) The selectivity filter of the N-methyl-d-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+. Mol Pharmacol 53:933–941
Wu E (2002) Evidence against the presence of NMDA receptors at a central glutamatergic synapse in leeches. Invert Neurosci 4:157–164. doi:10.1007/s10158-002-0017-6
Xia S, Miyashita T, Fu TF, Lin WY, Wu CL, Pyzocha L, Lin IR, Saitoe M, Tully T, Chiang AS (2005) NMDA receptors mediate olfactory learning and memory in Drosophila. Curr Biol 15:603–615. doi:10.1016/j.cub.2005.02.059
Yamazaki M, Mori H, Araki K, Mori KJ, Mishina M (1992) Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett 300:39–45. doi:10.1016/0014-5793(92)80160-I
Zannat MT, Locatelli F, Rybak J, Menzel R, Leboulle G (2006) Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci Lett 398:274–279. doi:10.1016/j.neulet.2006.01.007
Zarain-Herzberg A, Lee-Rivera I, Rodriguez G, Lopez-Colome AM (2005) Cloning and characterization of the chick NMDA receptor subunit-1 gene. Brain Res Mol Brain Res 137:235–251. doi:10.1016/j.molbrainres.2005.03.006