Immunity & Ageing

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Decreased immunoglobulin G in brain regions of elder female APOE4-TR mice accompany with Aβ accumulation
Immunity & Ageing - Tập 16 - Trang 1-13 - 2019
Lihang Zhang, Juan Xu, Jinchao Gao, Peiqing Chen, Ming Yin, Wenjuan Zhao
Apolipoprotein E4 (APOE4) and ageing are the most important known risk factors for late-onset Alzheimer’s disease (AD). In the present study, we determined the alterations of IgG, CD19, and Aβ in various brain regions of uninfected male and female APOE3- and APOE4-TR mice at the age of 3 and 10 months to elucidate impacts of AD risk factors on alterations of brain IgG. Positive staining for IgG was distributed across the brain, including neocortex, entorhinal cortex, hippocampus, thalamus and cerebellum. IgG positive staining was mainly located on microglia, but not astrocytes. Some IgG positive neurons were also observed, but only in mediodorsal thalamic nucleus. Compared with APOE3-TR mice, 10-month-old female APOE4-TR mice had lower IgG level in AD susceptible brain regions such as neocortex, entorhinal cortex and hippocampus, but no significant changes in thalamus and cerebellum, two regions nearly intact in AD. In addition, the expression of CD19, a specific marker for mature B cells, was significantly reduced in the hippocampus of 10-month-old female APOE4-TR mice. Although there were no obvious differences in plasma IgG levels between APOE4- and age matched female APOE3-TR mice, significant decreased B cell amount in blood of 10-month-old female APOE4-TR mice have also been found. Moreover, more obvious positive staining for Aβ was observed in the cortex of 10-month-old female APOE4-TR mice than other groups. Our study demonstrated that AD risk factors were associated with IgG alterations in various brain regions, which might result from the defects of humoral immunity and lead to the impairment of IgG-mediated clearance of Aβ by microglia, therefore facilitated AD progression.
Thymic function and survival at advance ages in nursing home residents from Southern Italy
Immunity & Ageing -
Ersilia Paparazzo, Silvana Geracitano, Vincenzo Lagani, Luigi Citrigno, Denise Bartolomeo, Mirella Aurora Aceto, Francesco Bruno, Raffaele Maletta, Giuseppe Passarino, Alberto Montesanto
Abstract Background

Immunosenescence is a complex process characterized by an age-related remodelling of immune system. The prominent effects of the immunosenescence process is the thymic involution and, consequently, the decreased numbers and functions of T cells. Since thymic involution results in a collapse of the T-cell receptor (TCR) repertoire, a reliable biomarker of its activity is represented by the quantification of signal joint T-cell receptor rearrangement excision circles (sjTRECs) levels. Although it is reasonable to think that thymic function could play a crucial role on elderly survival, only a few studies investigated the relationship between an accurate measurement of human thymic function and survival at old ages.

Methods and findings

By quantifying the amount sjTRECs by real-time polymerase chain reaction (PCR), the decrease in thymic output in 241 nursing home residents from Calabria (Southern Italy) was evaluated to investigate the relationship between thymic function and survival at old ages. We found that low sjTREC levels were associated with a significant increased risk of mortality at older ages. Nursing home residents with lower sjTREC exhibit a near 2-fold increase in mortality risk compared to those with sjTREC levels in a normal range.

Conclusion

Thymic function failure is an independent predictor of mortality among elderly nursing home residents. sjTREC represents a biomarker of effective ageing as its blood levels could anticipate individuals at high risk of negative health outcomes. The identification of these subjects is crucial to manage older people’s immune function and resilience, such as, for instance, to plan more efficient vaccinal campaigns in older populations.

Improving seasonal influenza vaccination for older adults
Immunity & Ageing - - 2021
Graham Pawelec, Janet E. McElhaney
Uremia causes premature ageing of the T cell compartment in end-stage renal disease patients
Immunity & Ageing - Tập 9 - Trang 1-8 - 2012
Ruud WJ Meijers, Nicolle HR Litjens, Elly A de Wit, Anton W Langerak, Ashley van der Spek, Carla C Baan, Willem Weimar, Michiel GH Betjes
End-stage renal disease (ESRD) patients treated with renal replacement therapy (RRT) have premature immunologically aged T cells which may underlie uremia-associated immune dysfunction. The aim of this study was to investigate whether uremia was able to induce premature ageing of the T cell compartment. For this purpose, we examined the degree of premature immunological T cell ageing by examining the T cell differentiation status, thymic output via T cell receptor excision circle (TREC) content and proliferative history via relative telomere length in ESRD patients not on RRT. Compared to healthy controls, these patients already had a lower TREC content and an increased T cell differentiation accompanied by shorter telomeres. RRT was able to enhance CD8+ T cell differentiation and to reduce CD8+ T cell telomere length in young dialysis patients. An increased differentiation status of memory CD4+ T cells was also noted in young dialysis patients. Based on these results we can conclude that uremia already causes premature immunological ageing of the T cell system and RRT further increases immunological ageing of the CD8+ T cell compartment in particular in young ESRD patients.
Classical monocytes maintain ex vivo glycolytic metabolism and early but not later inflammatory responses in older adults
Immunity & Ageing - Tập 16 Số 1 - 2019
Brandt D. Pence, John W. Yarbro
Blood RNA-Seq profiling reveals a set of circular RNAs differentially expressed in frail individuals
Immunity & Ageing - Tập 20 - Trang 1-11 - 2023
Leire Iparraguirre, Ainhoa Alberro, Saioa GS Iñiguez, Maider Muñoz-Culla, Itziar Vergara, Ander Matheu, David Otaegui
Frailty is an intermediate and reversible geriatric syndrome that often precedes dependence. Therefore, its identification is essential to prevent dependence. Several molecules have been proposed as biomarkers of frailty, but none of them have reached clinical practice. Recently, circular RNAs have emerged as new non-coding RNAs. Their regulatory role together with their high stability in biofluids makes them good candidates as biomarkers for various processes, but, to date, no study has characterized the expression of circRNA in frailty. We studied RNA from leukocytes of 35 frails and 35 robust individuals. After RNA-Sequencing, circRNA detection was performed by CIRI2 and Circexplorer2 and differential expression analysis by DESeq2. Validation was performed by Quantitative-PCR. Linear Discriminant Analysis was performed to determine the best circRNA combination to discriminate frail from robust. In addition, CircRNA candidates were studied in 13 additional elder donors before and after a 3-month physical intervention. We found 89 differentially expressed circRNAs (p-value<0.05, FC>|1.5|) with frailty. Upregulation of hsa_circ_0007817, hsa_circ_0101802 and hsa_circ_0060527 in frail individuals was validated. The combination of hsa_circ_0079284, hsa_circ_0007817 and hsa_circ_0075737 levels showed a great biomarker value with a 95.9% probability of correctly classifying frail and robust individuals. Moreover, hsa_circ_0079284 levels decreased after physical intervention in concordance with an improvement in frailty scores. This work describes for the first time a different expression pattern of circular RNA (circRNAs) between frail and robust individuals. Moreover, the level of some circRNAs is modulated after a physical intervention. These results suggest that they could be used as minimally invasive biomarkers of frailty.
Helicobacter pylori infection and Parkinson’s Disease: etiology, pathogenesis and levodopa bioavailability
Immunity & Ageing - Tập 21 - Trang 1-13 - 2024
Bang-rong Wei, Yu-jia Zhao, Yu-feng Cheng, Chun Huang, Feng Zhang
Parkinson’s disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.
Emergence of T cell immunosenescence in diabetic chronic kidney disease
Immunity & Ageing - - 2020
Yen‐Ling Chiu, Wan‐Chuan Tsai, Ruo‐Wei Hung, I-Yu Chen, Kai-Hsiang Shu, Szu-Yu Pan, Feng-Jung Yang, Te‐Tien Ting, Ju-Ying Jiang, Yu‐Sen Peng, Yi‐Fang Chuang
Abstract Background

Type 2 diabetes is an important challenge given the worldwide epidemic and is the most important cause of end-stage renal disease (ESRD) in developed countries. It is known that patients with ESRD and advanced renal failure suffer from immunosenescence and premature T cell aging, but whether such changes develop in patients with less severe chronic kidney disease (CKD) is unclear.

Method

523 adult patients with type 2 diabetes were recruited for this study. Demographic data and clinical information were obtained from medical chart review. Immunosenescence, or aging of the immune system was assessed by staining freshly-obtained peripheral blood with immunophenotyping panels and analyzing cells using multicolor flow cytometry.

Result

Consistent with previously observed in the general population, both T and monocyte immunosenescence in diabetic patients positively correlate with age. When compared to diabetic patients with preserved renal function (estimated glomerular filtration rate > 60 ml/min), patients with impaired renal function exhibit a significant decrease of total CD3+ and CD4+ T cells, but not CD8+ T cell and monocyte numbers. Immunosenescence was observed in patients with CKD stage 3 and in patients with more severe renal failure, especially of CD8+ T cells. However, immunosenescence was not associated with level of proteinuria level or glucose control. In age, sex and glucose level-adjusted regression models, stage 3 CKD patients exhibited significantly elevated percentages of CD28, CD127, and CD57+ cells among CD8+ T cells when compared to patients with preserved renal function. In contrast, no change was detected in monocyte subpopulations as renal function declined. In addition, higher body mass index (BMI) is associated with enhanced immunosenescence irrespective of CKD status.

Conclusion

The extent of immunosenescence is not significantly associated with proteinuria or glucose control in type 2 diabetic patients. T cells, especially the CD8+ subsets, exhibit aggravated characteristics of immunosenescence during renal function decline as early as stage 3 CKD. In addition, inflammation increases since stage 3 CKD and higher BMI drives the accumulation of CD8+CD57+ T cells. Our study indicates that therapeutic approaches such as weight loss may be used to prevent the emergence of immunosenescence in diabetes before stage 3 CKD.

Age-related appearance of a CMV-specific high-avidity CD8+ T cell clonotype which does not occur in young adults
Immunity & Ageing - Tập 5 - Trang 1-9 - 2008
Angelika Schwanninger, Birgit Weinberger, Daniela Weiskopf, Dietmar Herndler-Brandstetter, Stephan Reitinger, Christoph Gassner, Harald Schennach, Walther Parson, Reinhard Würzner, Beatrix Grubeck-Loebenstein
Old age is associated with characteristic changes of the immune system contributing to higher incidence and severity of many infectious diseases. Particularly within the T cell compartment latent infection with human Cytomegalovirus (CMV) is contributing to and accelerating immunosenescence. However, latent CMV infection and reactivation usually does not cause overt symptoms in immunocompetent elderly persons indicating immunological control of disease. Little is still known about the clonal composition of CMV-specific T cell responses in donors of different age. We therefore analyzed CD8+ T cells specific for an immunodominant pp65-derived nonamer-peptide (NLVPMVATV; CMVNLV) in different age-groups. Independent of donor age CMVNLV-specific CD8+ T cells preferentially use the V beta family 8. This family has monoclonal expansions in the majority of donors after stimulation of CD8+ T cells with the peptide. By sequencing the CDR3 region of the T cell receptor we demonstrated that CMVNLV-specific, BV8+ CD8+ T cells share the conserved CDR3-sequence motif SANYGYT in donors of all age groups. Interestingly, a second conserved clonotype with the CDR3-sequence motif SVNEAF appears in middle-aged and elderly donors. This clonotype is absent in young individuals. The age-related clonotype SVNEAF binds to the pMHC-complex with higher avidity than the clonotype SANYGYT, which is predominant in young adults. The dominance of this high avidity clonotype may explain the lack of overt CMV-disease in old age.
Erratum to: Early dysregulation of the memory CD8+T cell repertoire leads to compromised immune responses to secondary viral infection in the aged
Immunity & Ageing - Tập 10 - Trang 1-1 - 2013
Lisa M Connor, Jacob E Kohlmeier, Lynn Ryan, Alan D Roberts, Tres Cookenham, Adam Quinn, Marcia A Blackman, David L Woodland
Tổng số: 394   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10