Does reactivation of cytomegalovirus contribute to severe COVID-19 disease?
Tóm tắt
The majority of people infected with SARS-CoV-2 are asymptomatic or have mild to moderate symptoms. However, for unknown reasons, about 15 % have severe pneumonia requiring hospital care and oxygen support, and about 5 % develop acute respiratory distress syndrome, septic shock, and multiorgan failure that result in a high mortality rate. The risk of severe COVID-19 is highest among those who are over 70 years of age. Why severe COVID-19 develops in some people but not others is not understood. Could some cases involve reactivation of latent cytomegalovirus (CMV)?
Tài liệu tham khảo
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
O’Driscoll M, Dos Santos GR, Wang L, Cummings DAT, Azman AS, Paireau J, Fontanet A, Cauchemez S, Salje H: Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2020.10.1038/s41586-020-2918-0.
Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, Andronico A, Hoze N, Richet J, Dubost CL, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369:208–11. https://doi.org/10.1126/science.abc3517.
Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol. 2002;37:445–53.
Adriaensen W, Pawelec G, Vaes B, Hamprecht K, Derhovanessian E, van Pottelbergh G, Degryse JM, Mathei C. CD4:8 Ratio Above 5 Is Associated With All-Cause Mortality in CMV-Seronegative Very Old Women: Results From the BELFRAIL Study. J Gerontol A Biol Sci Med Sci. 2017;72:1155–62. https://doi.org/10.1093/gerona/glw215.
Roberts ET, Haan MN, Dowd JB, Aiello AE. Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol. 2010;172:363–71. https://doi.org/10.1093/aje/kwq177.
Wang GC, Kao WH, Murakami P, Xue QL, Chiou RB, Detrick B, McDyer JF, Semba RD, Casolaro V, Walston JD, Fried LP. Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. Am J Epidemiol. 2010;171:1144–52. https://doi.org/10.1093/aje/kwq062.
Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P. Memory inflation: continuous accumulation of antiviral CD8 + T cells over time. J Immunol. 2003;170:2022–9. https://doi.org/10.4049/jimmunol.170.4.2022.
Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L, Moss P. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol. 2009;155:423–32. https://doi.org/10.1111/j.1365-2249.2008.03785.x.
Lindau P, Mukherjee R, Gutschow MV, Vignali M, Warren EH, Riddell SR, Makar KW, Turtle CJ, Robins HS. Cytomegalovirus Exposure in the Elderly Does Not Reduce CD8 T Cell Repertoire Diversity. J Immunol. 2019;202:476–83. https://doi.org/10.4049/jimmunol.1800217.
Powers C, DeFilippis V, Malouli D, Fruh K. Cytomegalovirus immune evasion. Curr Top Microbiol Immunol. 2008;325:333–59.
Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection. Front Immunol. 2017;8:784. https://doi.org/10.3389/fimmu.2017.00784.
Moss P. “The ancient and the new”: is there an interaction between cytomegalovirus and SARS-CoV-2 infection? Immun Ageing. 2020;17:14. https://doi.org/10.1186/s12979-020-00185-x.
Kadambari S, Klenerman P, Pollard AJ. Why the elderly appear to be more severely affected by COVID-19: The potential role of immunosenescence and CMV. Rev Med Virol. 2020;30:e2144. https://doi.org/10.1002/rmv.2144.
Soderberg-Naucler C. Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med. 2006;259:219–46. https://doi.org/10.1111/j.1365-2796.2006.01618.x.
Belga S, MacDonald C, Chiang D, Kabbani D, Shojai S, Abraldes JG, Cervera C: Donor graft CMV-serostatus and the risk of arterial and venous thrombotic events in seronegative recipients after non-thoracic solid organ transplantation. Clin Infect Dis 2020.10.1093/cid/ciaa125.
Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One. 2011;6:e16103. https://doi.org/10.1371/journal.pone.0016103.
Catalano-Pons C, Quartier P, Leruez-Ville M, Kaguelidou F, Gendrel D, Lenoir G, Casanova JL, Bonnet D. Primary cytomegalovirus infection, atypical Kawasaki disease, and coronary aneurysms in 2 infants. Clin Infect Dis. 2005;41:e53-56. https://doi.org/10.1086/432578.
Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, Tan Z, Zicari S, Ruggiero A, Pascucci GR, et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell. 2020;183(968):981. https://doi.org/10.1016/j.cell.2020.09.016 e967.
Ahlfors K. IgG antibodies to cytomegalovirus in a normal urban Swedish population. Scand J Infect Dis. 1984;16:335–7.
Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J Pathol. 2015;235:288–97. https://doi.org/10.1002/path.4437.
Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C, Devleesschauwer B, Griffiths P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev Med Virol. 2019;29:e2034. https://doi.org/10.1002/rmv.2034.
Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis. 2006;43:1143–51. https://doi.org/10.1086/508173.
Tookey PA, Ades AE, Peckham CS. Cytomegalovirus prevalence in pregnant women: the influence of parity. Arch Dis Child. 1992;67:779–83. https://doi.org/10.1136/adc.67.7_spec_no.779.
Hjelmesaeth J, Hartmann A, Leivestad T, Holdaas H, Sagedal S, Olstad M, Jenssen T. The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int. 2006;69:588–95.
Johnsen JI, Baryawno N, Soderberg-Naucler C. Is human cytomegalovirus a target in cancer therapy? Oncotarget. 2011;2:1329–38.
Reeves M, Sinclair J. Aspects of human cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol. 2008;325:297–313.
Soderberg-Naucler C, Fish KN, Nelson JA. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell. 1997;91:119–26.
Dmitrienko S, Balshaw R, Machnicki G, Shapiro RJ, Keown PA. Probabilistic modeling of cytomegalovirus infection under consensus clinical management guidelines. Transplantation. 2009;87:570–7. https://doi.org/10.1097/TP.0b013e3181949e09.
Atabani SF, Smith C, Atkinson C, Aldridge RW, Rodriguez-Peralvarez M, Rolando N, Harber M, Jones G, O’Riordan A, Burroughs AK, et al. Cytomegalovirus replication kinetics in solid organ transplant recipients managed by preemptive therapy. Am J Transplant. 2012;12:2457–64. https://doi.org/10.1111/j.1600-6143.2012.04087.x.
Poole E, Juss JK, Krishna B, Herre J, Chilvers ER, Sinclair J. Alveolar Macrophages Isolated Directly From Human Cytomegalovirus (HCMV)-Seropositive Individuals Are Sites of HCMV Reactivation In Vivo. J Infect Dis. 2015;211:1936–42. https://doi.org/10.1093/infdis/jiu837.
van der Bij W, Speich R. Management of cytomegalovirus infection and disease after solid-organ transplantation. Clin Infect Dis. 2001;33(Suppl 1):S32-37. https://doi.org/10.1086/320902.
Westall GP, Michaelides A, Williams TJ, Snell GI, Kotsimbos TC. Bronchiolitis obliterans syndrome and early human cytomegalovirus DNAaemia dynamics after lung transplantation. Transplantation. 2003;75:2064–8.
Potena L, Valantine HA. Cytomegalovirus-associated allograft rejection in heart transplant patients. Curr Opin Infect Dis. 2007;20:425–31.
Fateh-Moghadam S, Bocksch W, Wessely R, Jager G, Hetzer R, Gawaz M. Cytomegalovirus infection status predicts progression of heart-transplant vasculopathy. Transplantation. 2003;76:1470–4.
Johansson I, Andersson R, Friman V, Selimovic N, Hanzen L, Nasic S, Nystrom U, Sigurdardottir V. Cytomegalovirus infection and disease reduce 10-year cardiac allograft vasculopathy-free survival in heart transplant recipients. BMC Infect Dis. 2015;15:582. https://doi.org/10.1186/s12879-015-1321-1.
Hjelmesaeth J, Sagedal S, Hartmann A, Rollag H, Egeland T, Hagen M, Nordal KP, Jenssen T. Asymptomatic cytomegalovirus infection is associated with increased risk of new-onset diabetes mellitus and impaired insulin release after renal transplantation. Diabetologia. 2004;47:1550–6.
Potena L, Grigioni F, Magnani G, Lazzarotto T, Musuraca AC, Ortolani P, Coccolo F, Fallani F, Russo A, Branzi A. Prophylaxis versus preemptive anti-cytomegalovirus approach for prevention of allograft vasculopathy in heart transplant recipients. J Heart Lung Transplant. 2009;28:461–7. https://doi.org/10.1016/j.healun.2009.02.009.
Ruttmann E, Geltner C, Bucher B, Ulmer H, Hofer D, Hangler HB, Semsroth S, Margreiter R, Laufer G, Muller LC. Combined CMV prophylaxis improves outcome and reduces the risk for bronchiolitis obliterans syndrome (BOS) after lung transplantation. Transplantation. 2006;81:1415–20. https://doi.org/10.1097/01.tp.0000209439.27719.ed.
Hui J, Qu YY, Tang N, Liu YM, Zhong H, Wang LM, Feng Q, Li Z, He F. Association of cytomegalovirus infection with hypertension risk: a meta-analysis. Wien Klin Wochenschr. 2016;128:586–91. https://doi.org/10.1007/s00508-016-0977-x.
Sherman S, Eytan O, Justo D. Thrombosis associated with acute cytomegalovirus infection: a narrative review. Arch Med Sci. 2014;10:1186–90. https://doi.org/10.5114/aoms.2014.47828.
Elkind MS, Ramakrishnan P, Moon YP, Boden-Albala B, Liu KM, Spitalnik SL, Rundek T, Sacco RL, Paik MC. Infectious burden and risk of stroke: the northern Manhattan study. Arch Neurol. 2010;67:33–8. https://doi.org/10.1001/archneurol.2009.271.
Kutza AS, Muhl E, Hackstein H, Kirchner H, Bein G. High incidence of active cytomegalovirus infection among septic patients. Clin Infect Dis. 1998;26:1076–82.
Reeves M, Sissons P, Sinclair J. Reactivation of human cytomegalovirus in dendritic cells. Discov Med. 2005;5:170–4.
Li X, Huang Y, Xu Z, Zhang R, Liu X, Li Y, Mao P. Cytomegalovirus infection and outcome in immunocompetent patients in the intensive care unit: a systematic review and meta-analysis. BMC Infect Dis. 2018;18:289. https://doi.org/10.1186/s12879-018-3195-5.
Cowley NJ, Owen A, Shiels SC, Millar J, Woolley R, Ives N, Osman H, Moss P, Bion JF. Safety and Efficacy of Antiviral Therapy for Prevention of Cytomegalovirus Reactivation in Immunocompetent Critically Ill Patients: A Randomized Clinical Trial. JAMA Intern Med. 2017;177:774–83. https://doi.org/10.1001/jamainternmed.2017.0895.
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, et al: Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020.10.1172/JCI137244.
McSharry BP, Avdic S, Slobedman B. Human cytomegalovirus encoded homologs of cytokines, chemokines and their receptors: roles in immunomodulation. Viruses. 2012;4:2448–70. https://doi.org/10.3390/v4112448.
Forte E, Swaminathan S, Schroeder MW, Kim JY, Terhune SS, Hummel M: Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. MBio 2018, 9.10.1128/mBio.01560-18.
Ma N, Mi H, Loesch K, Pollard R. Human cytomegalovirus-induced immunosuppression. Relationship to tumor necrosis factor-dependent release of arachidonic acid and prostaglandin E2 in human monocytes. J Clin Invest. 1996;97:2635–41.
Qiu H, Straat K, Rahbar A, Wan M, Soderberg-Naucler C, Haeggstrom JZ. Human CMV infection induces 5-lipoxygenase expression and leukotriene B4 production in vascular smooth muscle cells. J Exp Med. 2008;205:19–24. https://doi.org/10.1084/jem.20070201.
Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Soderberg-Naucler C, Smit MJ: HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal 2010, 3:ra58.10.1126/scisignal.2001180.
Streblow DN, Söderberg-Nauclér C, Nelson JA, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 1999, 99.
Reeves MB, Compton T. Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol. 2011;85:12750–8. https://doi.org/10.1128/JVI.05878-11.
Almeida GD, Porada CD, St Jeor S, Ascensao JL. Human cytomegalovirus alters interleukin-6 production by endothelial cells. Blood. 1994;83:370–6.
Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol. 2003;77:4588–96.
Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020;16:e1008737. https://doi.org/10.1371/journal.ppat.1008737.
Murray MJ, Peters NE, Reeves MB: Navigating the Host Cell Response during Entry into Sites of Latent Cytomegalovirus Infection. Pathogens 2018, 7.10.3390/pathogens7010030.
Michelson S, Alcami J, Kim SJ, Danielpour D, Bachelerie F, Picard L, Bessia C, Paya C, Virelizier JL. Human cytomegalovirus infection induces transcription and secretion of transforming growth factor beta 1. J Virol. 1994;68:5730–7.
Shimamura M, Murphy-Ullrich JE, Britt WJ. Human cytomegalovirus induces TGF-beta1 activation in renal tubular epithelial cells after epithelial-to-mesenchymal transition. PLoS Pathog. 2010;6:e1001170. https://doi.org/10.1371/journal.ppat.1001170.
Merrill JT, Erkan D, Winakur J, James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16:581–9. https://doi.org/10.1038/s41584-020-0474-5.
Rahbar A, Soderberg-Naucler C. Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. J Virol. 2005;79:2211–20. https://doi.org/10.1128/JVI.79.4.2211-2220.2005.
Le Balc’h P, Pinceaux K, Pronier C, Seguin P, Tadie JM, Reizine F: Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit Care 2020, 24:530.10.1186/s13054-020-03252-3.
Geisen WR, Berger J, Schwartz C, Reddy A, Rai B, Wadih G, Peck J. Cytomegalovirus Enterocolitis secondary to experimental COVID-19 therapy. IDCases. 2020;22:e00962. https://doi.org/10.1016/j.idcr.2020.e00962.
Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi RS, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489–501. https://doi.org/10.1016/j.cell.2020.05.015. e1415.
Neidleman J, Luo X, Frouard J, Xie G, Gill G, Stein ES, McGregor M, Ma T, George AF, Kosters A, et al. SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. Cell Rep Med. 2020;1:100081. https://doi.org/10.1016/j.xcrm.2020.100081.
Sekine T, Perez-Potti A, Rivera-Ballesteros O, Stralin K, Gorin JB, Olsson A, Llewellyn-Lacey S, Kamal H, Bogdanovic G, Muschiol S, et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020;183(158–168):e114. https://doi.org/10.1016/j.cell.2020.08.017.
Willette AA, Willette SA, Wang Q, Pappas C, Klinedinst BS, Le S, Larsen B, Pollpeter A, Brenner N, Waterboer T: Antibody response to infectious diseases and other factors accurately predict COVID-19 infection and severity risk 10–14 years later: a retrospective UK Biobank cohort study. medRxiv 2020.10.1101/2020.06.09.20127092.
Shrock E, Fujimura E, Kula T, Timms RT, Lee IH, Leng Y, Robinson ML, Sie BM, Li MZ, Chen Y, et al: Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 2020.10.1126/science.abd4250.
Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. Cytomegalovirus (CMV) seropositivity decreases B cell responses to the influenza vaccine. Vaccine. 2015;33:1433–9. https://doi.org/10.1016/j.vaccine.2015.01.071.
Derhovanessian E, Theeten H, Hahnel K, Van Damme P, Cools N, Pawelec G. Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza vaccination. Vaccine. 2013;31:685–90. https://doi.org/10.1016/j.vaccine.2012.11.041.
Ladds E, Rushforth A, Wieringa S, Taylor S, Rayner C, Husain L, Greenhalgh T. Persistent symptoms after Covid-19: qualitative study of 114 “long Covid” patients and draft quality principles for services. BMC Health Serv Res. 2020;20:1144. https://doi.org/10.1186/s12913-020-06001-y.