Genes and Development

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli.
Genes and Development - Tập 10 Số 9 - Trang 1143-1151 - 1996
Andrea Muffler, Daniela Fischer, Regine Hengge‐Aronis

The rpoS-encoded sigma(S) subunit of RNA polymerase in Escherichia coli is a global regulatory factor involved in several stress responses. Mainly because of increased rpoS translation and stabilization of sigma(S), which in nonstressed cells is a highly unstable protein, the cellular sigma(S) content increases during entry into stationary phase and in response to hyperosmolarity. Here, we identify the hfq-encoded RNA-binding protein HF-I, which has been known previously only as a host factor for the replication of phage Qbeta RNA, as an essential factor for rpoS translation. An hfq null mutant exhibits strongly reduced sigma(S) levels under all conditions tested and is deficient for growth phase-related and osmotic induction of sigma(S). Using a combination of gene fusion analysis and pulse-chase experiments, we demonstrate that the hfq mutant is specifically impaired in rpoS translation. We also present evidence that the H-NS protein, which has been shown to affect rpoS translation, acts in the same regulatory pathway as HF-I at a position upstream of HF-I or in conjunction with HF-I. In addition, we show that expression and heat induction of the heat shock sigma factor sigma(32) (encoded by rpoH) is not dependent on HF-I, although rpoH and rpoS are both subject to translational regulation probably mediated by changes in mRNA secondary structure. HF-I is the first factor known to be specifically involved in rpoS translation, and this role is the first cellular function to be identified for this abundant ribosome-associated RNA-binding protein in E. coli.

Interactions between Sox9 and β-catenin control chondrocyte differentiation
Genes and Development - Tập 18 Số 9 - Trang 1072-1087 - 2004
Haruhiko Akiyama, Jon P. Lyons, Yuko Mori–Akiyama, Xiaohong Yang, Ren Zhang, Zhaoping Zhang, Jian Min Deng, Makoto M. Taketo, Takashi Nakamura, Richard R. Behringer, Pierre D. McCrea, Benoît De Crombrugghe

Chondrogenesis is a multistep process that is essential for endochondral bone formation. Previous results have indicated a role for β-catenin and Wnt signaling in this pathway. Here we show the existence of physical and functional interactions between β-catenin and Sox9, a transcription factor that is required in successive steps of chondrogenesis. In vivo, either overexpression of Sox9 or inactivation of β-catenin in chondrocytes of mouse embryos produces a similar phenotype of dwarfism with decreased chondrocyte proliferation, delayed hypertrophic chondrocyte differentiation, and endochondral bone formation. Furthermore, either inactivation of Sox9 or stabilization of β-catenin in chondrocytes also produces a similar phenotype of severe chondrodysplasia. Sox9 markedly inhibits activation of β-catenin-dependent promoters and stimulates degradation of β-catenin by the ubiquitination/proteasome pathway. Likewise, Sox9 inhibits β-catenin-mediated secondary axis induction in Xenopus embryos. β-Catenin physically interacts through its Armadillo repeats with the C-terminal transactivation domain of Sox9. We hypothesize that the inhibitory activity of Sox9 is caused by its ability to compete with Tcf/Lef for binding to β-catenin, followed by degradation of β-catenin. Our results strongly suggest that chondrogenesis is controlled by interactions between Sox9 and the Wnt/β-catenin signaling pathway.

Genetic interactions underlying flower color patterns in Antirrhinum majus.
Genes and Development - Tập 3 Số 11 - Trang 1758-1767 - 1989
Jorge Cury de Almeida, R. Carpenter, Timothy P. Robbins, Cathie Martin, Enrico Coen

Diverse spatial patterns of flower color in Antirrhinum can be produced by a series of alleles of pallida, a gene encoding an enzyme required for pigment biosynthesis. The alleles arose by imprecise excision of a transposable element, Tam3, and we show that they carry a series of deletions involving progressive removal of sequences adjacent to the excision site. This has enabled us to define three cis-acting upstream regions, A, B, and C, which differentially affect the level of pallida expression in distinct areas of the flower. We show further that an unlinked locus, delila, regulates the spatial distribution of pallida transcript. Deletion of regions ABC at the pallida locus uncouples pallida from regulation by delila, whereas deletion of A or AB brings pallida under regulation by delila in a new area of the flower. These results suggest that diverse patterns of pallida expression reflect the different ways in which alleles interact with a prepattern of both common and spatially specific genetic signals in the flower.

The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain Cd4 silencing in cytotoxic T cells
Genes and Development - Tập 33 Số 11-12 - Trang 669-683 - 2019
Charles Ng, Martin Aichinger, Tung Nguyen, Christy Au, Tariq Najar, Lin Wu, Kai R. Mesa, Will Liao, Jean-Pierre Quivy, Benjamin Hubert, Genevieve Almouzni, Johannes Zuber, Dan R. Littman
The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3.
Genes and Development - Tập 10 Số 12 - Trang 1443-1454 - 1996
Cynthia Yost, Matthew P. Torres, Jim Miller, Eagle Yi-Kung Huang, David Kimelman, Randall T. Moon

The serine/threonine kinase Xgsk-3 and the intracellular protein beta-catenin are necessary for the establishment of the dorsal-ventral axis in Xenopus. Although genetic evidence from Drosophila indicates that Xgsk-3 is upstream of beta-catenin, direct interactions between these proteins have not been demonstrated. We demonstrate that phosphorylation of beta-catenin in vivo requires an in vitro amino-terminal Xgsk-3 phosphorylation site, which is conserved in the Drosophila protein armadillo. beta-catenin mutants lacking this site are more active in inducing an ectopic axis in Xenopus embryos and are more stable than wild-type beta-catenin in the presence of Xgsk-3 activity, supporting the hypothesis that Xgsk-3 is a negative regulator of beta-catenin that acts through the amino-terminal site. Inhibition of endogenous Xgsk-3 function with a dominant-negative mutant leads to an increase in the steady-state levels of ectopic beta-catenin, indicating that Xgsk-3 functions to destabilize beta-catenin and thus decrease the amount of beta-catenin available for signaling. The levels of endogenous beta-catenin in the nucleus increases in the presence of the dominant-negative Xgsk-3 mutant, suggesting that a role of Xgsk-3 is to regulate the steady-state levels of beta-catenin within specific subcellular compartments. These studies provide a basis for understanding the interaction between Xgsk-3 and beta-catenin in the establishment of the dorsal-ventral axis in early Xenopus embryos.

Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway
Genes and Development - Tập 16 Số 9 - Trang 1066-1076 - 2002
Sharon Amit, Ada Hatzubai, Yaara Birman, Jens Andersen, Etti Ben-Shushan, Matthias Mann, Yinon Ben‐Neriah, Irit Alkalay

The Wnt pathway controls numerous developmental processes via the β-catenin–TCF/LEF transcription complex. Deregulation of the pathway results in the aberrant accumulation of β-catenin in the nucleus, often leading to cancer. Normally, cytoplasmic β-catenin associates with APC and axin and is continuously phosphorylated by GSK-3β, marking it for proteasomal degradation. Wnt signaling is considered to prevent GSK-3β from phosphorylating β-catenin, thus causing its stabilization. However, the Wnt mechanism of action has not been resolved. Here we study the regulation of β-catenin phosphorylation and degradation by the Wnt pathway. Using mass spectrometry and phosphopeptide-specific antibodies, we show that a complex of axin and casein kinase I (CKI) induces β-catenin phosphorylation at a single site: serine 45 (S45). Immunopurified axin and recombinant CKI phosphorylate β-catenin in vitro at S45; CKI inhibition suppresses this phosphorylation in vivo. CKI phosphorylation creates a priming site for GSK-3β and is both necessary and sufficient to initiate the β-catenin phosphorylation–degradation cascade. Wnt3A signaling and Dvl overexpression suppress S45 phosphorylation, thereby precluding the initiation of the cascade. Thus, a single, CKI-dependent phosphorylation event serves as a molecular switch for the Wnt pathway.

Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression.
Genes and Development - Tập 5 Số 5 - Trang 728-740 - 1991
R Schmitt, Eddy Bruyns, H. Ralph Snodgrass

A novel system to study early hematopoietic development is described. This report documents the in vitro capacity of murine embryonic stem (ES) cells to differentiate into hematopoietic precursors of most, if not all, of the colony-forming cells found in normal bone marrow. This system is used to correlate the genetic expression of cytokines, their receptors, the beta-globins, and the hematopoietic cell surface markers throughout the time course of ES cell differentiation with the hematopoietic development that occurs in these cultures. Our results indicate that there is a strong transcriptional activation, in a well-defined temporal order, of most of these genes including erythropoietin (Epo), CSF-1, IL-4, beta-globins, as well as the receptors for Epo, CSF-1, and IL-4. IL-3 and GM-CSF were not expressed during the first 24 days of ES cell differentiation. In contrast, the Steel (Sl) factor (SLF) was expressed early and underwent substantial up-regulation during this differentiation, and its receptor, c-kit, was expressed relatively constantly throughout the culture period. Our results are consistent with the conclusion that SLF, Epo, IL-4, and IL-6 are important during the early stages of ES cell differentiation and hematopoietic development. Furthermore, these results argue strongly that IL-3 and GM-CSF are not critical to early hematopoiesis. This system offers a unique in vitro model for studying hematopoietic development at the earliest possible stages.

Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells
Genes and Development - Tập 20 Số 12 - Trang 1557-1562 - 2006
Barna D. Fodor, Stefan Kubicek, Masato Yonezawa, Roderick J. O’Sullivan, Roopsha Sengupta, Laura Perez-Burgos, Susanne Opravil, Karl Mechtler, Gunnar Schotta, Thomas Jenuwein

Histone lysine trimethyl states represent some of the most robust epigenetic modifications in eukaryotic chromatin. Using a candidate approach, we identified the subgroup of murine Jmjd2 proteins to antagonize H3K9me3 at pericentric heterochromatin. H3K27me3 and H4K20me3 marks are not impaired in inducible Jmjd2b-GFP cell lines, but Jmjd2b also reduces H3K36 methylation. Since recombinant Jmjd2b appears as a very poor enzyme, we applied metabolic labeling with heavy methyl groups to demonstrate Jmjd2b-mediated removal of chromosomal H3K9me3 as an active process that occurs well before replication of chromatin. These data reveal that certain members of the jmjC class of hydroxylases can work in a pathway that actively antagonizes a histone lysine trimethyl state.

β1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis
Genes and Development - Tập 17 Số 19 - Trang 2465-2479 - 2003
Attila Aszódi, Ernst B. Hunziker, Cord Brakebusch, Reinhard Fässler

β1 integrins are highly expressed on chondrocytes, where they mediate adhesion to cartilage matrix proteins. To assess the functions of β1 integrin during skeletogenesis, we inactivated the β1 integrin gene in chondrocytes. We show here that these mutant mice develop a chondrodysplasia of various severity. β1-deficient chondrocytes had an abnormal shape and failed to arrange into columns in the growth plate. This is caused by a lack of motility, which is in turn caused by a loss of adhesion to collagen type II, reduced binding to and impaired spreading on fibronectin, and an abnormal F-actin organization. In addition, mutant chondrocytes show decreased proliferation caused by a defect in G1/S transition and cytokinesis. The G1/S defect is, at least partially, caused by overexpression of Fgfr3, nuclear translocation of Stat1/Stat5a, and up-regulation of the cell cycle inhibitors p16 and p21. Altogether these findings establish that β1-integrin-dependent motility and proliferation of chondrocytes are mandatory events for endochondral bone formation to occur.

Structural insights into eRF3 and stop codon recognition by eRF1
Genes and Development - Tập 23 Số 9 - Trang 1106-1118 - 2009
Zhihong Cheng, Kazuki Saito, Andrey V. Pisarev, M. Wada, Vera P. Pisareva, Tatyana V. Pestova, Michał J. Gajda, Adam Round, Chunguang Kong, Mengkiat Lim, Yoshikazu Nakamura, Dmitri I. Svergun, Koichi Ito, Haiwei Song

Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1.

Tổng số: 782   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10