Chromosome integrity inSaccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins

Genes and Development - Tập 17 Số 14 - Trang 1741-1754 - 2003
Dongli Huang1, Douglas Koshland2
1Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland , Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218, USA
2Howard Hughes Medical Institute Carnegie Institution of Washington Department of Embryology Baltimore, Maryland 21210 USA

Tóm tắt

The integrity of chromosomes during cell division is ensured by bothtrans-acting factors andcis-acting chromosomal sites. Failure of either these chromosome integrity determinants (CIDs) can cause chromosomes to be broken and subsequently misrepaired to form gross chromosomal rearrangements (GCRs). We developed a simple and rapid assay for GCRs, exploiting yeast artificial chromosomes (YACs) inSaccharomyces cerevisiae. We used this assay to screen a genome-wide pool of mutants for elevated rates of GCR. The analyses of these mutants define new CIDs (Orc3p, Orc5p, and Ycs4p) and new pathways required for chromosome integrity in DNA replication elongation (Dpb11p), DNA replication initiation (Orc3p and Orc5p), and mitotic condensation (Ycs4p). We show that the chromosome integrity function of Orc5p is associated with its ATP-binding motif and is distinct from its function in controlling the efficiency of initiation of DNA replication. Finally, we used our YAC assay to assess the interplay oftransandcisfactors in chromosome integrity. Increasing the number of origins on a YAC suppresses GCR formation in ourdpb11mutant but enhances it in ourorcmutants. This result provides potential insights into the counterbalancing selective pressures necessary for the evolution of origin density on chromosomes.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.92.25.11791

10.1101/gad.969602

10.1002/bies.950130702

1988, Methods Enzymol., 6, 229

10.1126/science.3033825

10.1038/12687

10.1016/S1097-2765(00)80109-4

10.1073/pnas.211342798

10.1074/jbc.M103078200

10.1083/jcb.149.4.811

1991, EMBO J., 10, 2707, 10.1002/j.1460-2075.1991.tb07815.x

1994, Xist. NAR, 22, 1830, 10.1093/nar/22.10.1830

10.1073/pnas.89.7.3098

10.1006/geno.1994.1351

1998, Mol. Cell. Biol., 18, 6102, 10.1128/MCB.18.10.6102

10.1083/jcb.98.3.922

10.1016/S0092-8674(00)81889-9

10.1126/science.1075277

10.1016/0076-6879(87)55024-8

10.1016/0378-1119(94)90139-2

1997, Mol. Cell. Biol., 17, 7159, 10.1128/MCB.17.12.7159

10.1016/S1097-2765(02)00513-0

10.1016/0092-8674(95)90528-6

10.1091/mbc.6.6.741

10.1128/MCB.20.8.2809-2817.2000

10.1073/pnas.25.8.405

10.1016/S0968-0004(00)01560-7

10.1073/pnas.062702199

10.1038/35082608

10.1016/S0092-8674(01)00227-6

Newlon C . and Burke, W. 1980. Replication of small chromosomal DNAs in yeast. In Mechanistic studies of DNA replication and recombination (eds. B. Alberts and C. Fox), pp. 399–409. Academic Press, New York.

2001, Development, 128, 1697, 10.1242/dev.128.9.1697

10.1091/mbc.12.11.3317

10.1073/pnas.96.20.11440

2000, Genetics, 155, 475, 10.1093/genetics/155.1.475

2000, Genes & Dev., 14, 1, 10.1101/gad.14.1.1

10.1016/0092-8674(84)90301-5

10.1080/095530098142653

10.1006/geno.1994.1352

10.1101/gad.1011002

10.1002/(SICI)1097-0061(199602)12:2<101::AID-YEA885>3.0.CO;2-2

2002, Genetics, 160, 1363, 10.1093/genetics/160.4.1363

1999, Mol. Cell. Biol., 19, 4231, 10.1128/MCB.19.6.4231

10.1016/S1097-2765(01)00216-7

10.1073/pnas.96.7.3824

10.1083/jcb.133.1.85