In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands that the user have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be intere...... hiện toàn bộ
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating thes...... hiện toàn bộ
This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal ...... hiện toàn bộ
The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performance measures with the inherently scalar way in which EAs reward individual performance, tha...... hiện toàn bộ
Evolutionary computation techniques have received a great deal of attention regarding their potential as optimization techniques for complex numerical functions. However, they have not produced a significant breakthrough in the area of nonlinear programming due to the fact that they have not addressed the issue of constraints in a systematic way. Only recently have several methods been pr...... hiện toàn bộ
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mid-eighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety of multiobjective EA (MOEA) techniques have been proposed and applied to many scient...... hiện toàn bộ
Genetic programming is a powerful method for automatically generating computer programs via the process of natural selection (Koza, 1992). However, in its standard form, there is no way to restrict the programs it generates to those where the functions operate on appropriate data types. In the case when the programs manipulate multiple data types and contain functions designed to operate ...... hiện toàn bộ
In optimization studies including multi-objective optimization, the main focus is placed on finding the global optimum or global Pareto-optimal solutions, representing the best possible objective values. However, in practice, users may not always be interested in finding the so-called global best solutions, particularly when these solutions are quite sensitive to the variable perturbation...... hiện toàn bộ
An extension of evolution strategies to multiparent recombination involving a variable number ϱ of parents to create an offspring individual is proposed. The extension is experimentally evaluated on a test suite of functions differing in their modality and separability and the regular/irregular arrangement of their local optima. Multiparent diagonal crossover and uniform scanning crossover...... hiện toàn bộ
AbstractOperations research is a well-established field that uses computational systems to support decisions in business and public life. Good solutions to operations research problems can make a large difference to the efficient running of businesses and organisations and so the field often searches for new methods to improve these solutions. The h...... hiện toàn bộ