Evolutionary Algorithms for Constrained Parameter Optimization Problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Back, T., Hoffmeister, F. & Schwefel, H.P. (199 1). A survey of evolution strategies. In R. K. Belew & L. B. Booker (Eds.), Pmceedizgs of the Fourth lntemational Conference on Genetic Algorithms (pp. 2-9). San Mateo, CA: Morgan Kaufmann.
Bean, J. C. & Hadj-Alouane, A. B. (1992). Adiialgeizeticalgoritbmforboll?zded integerprogr-ams. Technical Report T R 92-53, Ann Arbor, MI: University ofMichigan, Department of Industrial and Operations Engineering.
Bilchev, G. (1995). Private communication.
Bilchev, G. & Parmee, I. (1995). Ant colony search vs. genetic algorithms. Technical Report. Plymouth, UK: University of Plymouth, Plymouth Engineering Design Centre.
Colorni, A., Dorigo, M. & Maniezzo, V. (1991). Distributed optimization by ant colonies. In P. Bourgine & F. Varela (Eds.), Aaceedingsof the First European Coizference o n Artificial L i f . Cambridge, MA: M I T PresdBradford Books.
Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In J. D. Schaffer (Ed.), Proccedivzgs of the Third Intematio2nl Conference on Genetic Algorithms (pp. 61-69). San Mateo, CA: Morgan Kaufmann.
Davis, L. (1995) Private communication.
De Jong, K. (1 975). The adysi.s ofthe bebanior- of a clnss ofgenetic adaptive systems. Doctoral dissertation, University of Michigan, Ann Arbor. L)i.rseitatim~ Abstl-acts htematiowal,6( lo), 5 140B. (University Microfilms No 76-9381).
Eiben, A., Raue, P.E. & Ruttkay, Z. (1994). Genetic algorithms with multi-parent recombination. In Y. Davidor, H.P. Schwefel, & R. MCnner (Eds.), Proceedings ojtbe Third Conference o n Paidlel Problem Solvingfi-om Napwe, Volume 866 of Lectwe Notes in Computer Science (pp. 78-87). Berlin: Springer-Verlag.
Eshelman, L. & Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-schemata. In L. D. Whitley (Ed.), Foendntionr of Genetic Algovithms 2 (pp. 187-202). Los Altos, CA: Morgan Kaufmann. parameter spaces. In Paceediizgs of the Third Annual Confkreie on Euokitioizaiy Progrumviing (pp. 84-97). River Edge, NJ: World Scientific.
Michalewicz, Z. & Nazhiyath, G. (1995). Genocop 111: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In D. B. Fogel (Ed.), PF-oceedingsof the Second IEEE bzteinntional Coizfererice o?a Eziokitionaiy Compiitation (pp. 647-65 1). Piscataway, NJ: IEEE Press.
Michalewicz, Z., Nazhiyath, G. & Michalewicz, M. (1996). A note on usefulness of geometrical crossover for numerical optimization problems. In P. J. Angeline & T. Back (Eds.), Proceediizgs ofthe Ftfth A?zmal Conference on Eziohtionaiy Programming. Cambridge, MA: M I T Press. In press.
Muhlenbein, H. & Voigt, HI.M. (1995). Gene pool recombination for the breeder genetic algorithm. In Proceedings of the 1nteirr.ational Couference on i21etaheiiristicsfor Optimization (pp. 19-2 5 ) . ilordrecht, The Netherlands: Kluwer Publishing.
Myung, H., Kim, J.H. & Fogel, D. (1995). Preliminary investigation into a two-stage method of evolutionary optimization on constrained problems. in J. R. McDonnell, R. G. Reynolds, & D. B. Fogel (Eds.), Proceediugr of the Foirith Allllllal Coizference 011 Evoliitiomq Progr-amming (pp. 449-463). Cambridge, MA: M I T Press.
Orvosh, D. & Davis, L. (1993). Shall we repair? Genetic algorithms, combinatorial optimization, and feasibility constraints. In S. Forrest (Ed.), Proceedings ofthe Fifth Intei7zntio?zal Coi$erencr on Gemtic Algorithms (p. 650). San Mateo, CA: Morgan Kaufmann.
Paredis, J. ( I 994). Coevolutionary constraint satisfaction. In Y. Davidor, H.P. Schwefel, & R. Manner (Eds.), Proceedings of the Third Coi$ei.eizce on Parallel Problem SolzGngfi-om Nature (pp. 46-55). Berlin: Springer-Verlag.
Parrnee, I. & Purchase, G. (1994). The development of directed genetic search technique for heavily constrained design spaces. In Proceedings of the Collfel-ence on Adaptiue Computing ii7 Engineering Desig-17 mid Control (pp. 97-102). Plymouth, UK: University of Plymouth.
Powell, D. & Skolnick, M. M. (1993). Using genetic algorithms in engineering design optimization with non-linear constraints. In S. Forrest (Ed.), Proceedings of the Fifth bzteirzntional Coifereiice 077 Genetic Algorithms (pp. 424-430). San Mateo, CA: Morgan Kaufmann.
Renders, J.M. & Bersini, H. (1 994). Hybridizing genetic algorithms with hill-climbing methods for global optimization: Two possible ways. In 2. Michalewicz, J. D. Schaffer, 11.P. Schwefel, D. B. Fogel, & H . Kitano (Eds.), Pruceedi7gr of the Fiirt IEEE Inte?rzatio?znl Coifereme o n Evolritioizniy Compitutioiz (pp. 3 12-3 17). Piscataway, NJ: IFXE Press.
Keynolds R., 1994, Proceedings ofthe Third Amial Coizfererzce 011 Ezioliitionaty Programming (pp., 13, 1
Reynolds, R., Michalewicz, Z. & Cavaretta, M. (1995). Using cultural algorithms for constraint handling in Genocop. In J. R. McDonnell, R. G. Reynolds, & D. B. Fogel (Eds.), Proceedings ofthe Fourth Anma1 Coizfereizce on Evolutionary A-ogramming (pp. 298-305). Cambridge, MA: M I T Press.
Richardson, J. T, Palmer, M. R., Liepins, G. & Hilliard, M. (1989). Some guidelines for genetic algorithms with penalty functions. In J. D. Schaffer (Ed.), Proceedingr of the Third 17ztei7zatioiml Coizference 017 Genetic Algorithms (pp. 191-197). San Mateo, CA: Morgan Kaufmann.
Schaffer, D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In J. J. Grefenstette (Ed.), Proceedings of" the First Inteirzational Corzference on Genetic Algorithms. New York: Laurence Erlbaum Associates.
Schoenauer, M. & Michalewicz, Z. (1996). Evolutionary computation at the edge of feasibility. In W. Ebeling & H.M. Voigt (Eds.), Paceediizgs of the Foziith Corzfeiwzee on Parallel Problem Solvingfi-om Natzire. Berlin: Springer-Verlag.