
Critical Ultrasound Journal
2036-7902
Cơ quản chủ quản: N/A
Các bài báo tiêu biểu
Access to ultrasound has increased significantly in resource-limited settings, including the developing world; however, there remains a lack of sonography education and ultrasound-trained physician support in developing countries. To further investigate this potential knowledge gap, our primary objective was to assess perceived barriers to ultrasound use in resource-limited settings by surveying care providers who practice in low- and middle-income settings.
A 25-question online survey was made available to health care providers who work with an ultrasound machine in low- and middle-income countries (LMICs), including doctors, nurses, technicians, and clinical officers. This was a convenience sample obtained from list-serves of ultrasound and radiologic societies. The survey was analyzed, and descriptive results were obtained.
One hundred and thirty-eight respondents representing 44 LMICs including countries from the continents of Africa, South America, and Asia completed the survey, with a response rate of 9.6 %. Ninety-one percent of the respondents were doctors, and 9 % were nurses or other providers. Applications for ultrasound were diverse, including obstetrics (75 %), DVT evaluation (51 %), abscess evaluation (54 %), cardiac evaluation (64 %), inferior vena cava (IVC) assessment (49 %), Focused Assessment Sonography for Trauma (FAST) exam (64 %), biliary tree assessment (54 %), and other applications. The respondents identified the following barriers to use of ultrasound: lack of training (60 %), lack of equipment (45 %), ultrasound machine malfunction (37 %), and lack of ultrasound maintenance capability (47 %). Seventy-four percent of the respondents wished to have further training in ultrasound, and 82 % were open to receiving distance learning or telesonography training. Subjects used communication tools including Skype, Dropbox, emailed photos, and picture archiving and communication system (PACS) as ways to communicate and receive feedback on ultrasound images.
Health care providers in the developing world identify lack of training as a primary barrier to regular use of ultrasound in their practice. While equipment requirements including maintenance and cost of machines are also important factors, future research is warranted on best practices for training methods, including telesonography and distance learning to enhance ultrasound use in low-resource settings.
Lung ultrasound has been shown to identify in real-time, various pathologies of the lung such as pneumonia, viral pneumonia, and acute respiratory distress syndrome (ARDS). Lung ultrasound maybe a first-line alternative to chest X-ray and CT scan in critically ill patients with respiratory failure. We describe the use of lung ultrasound imaging and findings in two cases of severe respiratory failure from avian influenza A (H7N9) infection.
Serial lung ultrasound images and video from two cases of H7N9 respiratory failure requiring mechanical ventilation and extracorporeal membrane oxygenation in a tertiary care intensive care unit were analyzed for characteristic lung ultrasound findings described previously for respiratory failure and infection. These findings were followed serially, correlated with clinical course and chest X-ray.
In both patients, characteristic lung ultrasound findings have been observed as previously described in viral pulmonary infections: subpleural consolidations associated or not with local pleural effusion. In addition, numerous, confluent, or coalescing B-lines leading to ‘white lung’ with corresponding pleural line thickening are associated with ARDS. Extension or reduction of lesions observed with ultrasound was also correlated respectively with clinical worsening or improvement. Coexisting consolidated pneumonia with sonographic air bronchograms was noted in one patient who did not survive.
Clinicians with access to point-of-care ultrasonography may use these findings as an alternative to chest X-ray or CT scan. Lung ultrasound imaging may assist in the efficient allocation of intensive care for patients with respiratory failure from viral pulmonary infections, especially in resource scarce settings or situations such as future respiratory virus outbreaks or pandemics.