Copernicus GmbH

Công bố khoa học tiêu biểu

Sắp xếp:  
Regional inversion of CO<sub>2</sub> ecosystem fluxes from atmospheric measurements: reliability of the uncertainty estimates
Copernicus GmbH - Tập 13 Số 17 - Trang 9039-9056
Grégoire Broquet, Frédéric Chevallier, François‐Marie Bréon, Nikolay Kadygrov, M. Alemanno, Francesco Apadula, Samuel Hammer, László Haszpra, Frank Meinhardt, Josep-Antón Morguí, Jarosław Nęcki, Salvatore Piacentino, Michel Ramonet, Martina Schmidt, Rona L. Thompson, Alex Vermeulen, Camille Yver-Kwok, Philippe Ciais
Abstract. The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5° resolution are applied for the western European domain where ~ 50 eddy covariance sites are operated. These inversions are conducted for the period 2002–2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38%. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than represented by the prior ecosystem model.
Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models
Copernicus GmbH - Tập 15 Số 10 - Trang 5325-5358
Marc Bocquet, Hendrik Elbern, Henk Eskes, Marcus Hirtl, Rahela Žabkar, Gregory R. Carmichael, Johannes Flemming, Antje Inness, Mariusz Pagowski, Juan L. Pérez, Pablo E. Saide, Roberto San José, Mikhail Sofiev, Julius Vira, Alexander Baklanov, Claudio Carnevale, G. A. Grell, Christian Seigneur
Abstract. Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorological and chemical data; however, because CCMM are fairly recent, data assimilation in CCMM has been limited to date. We review here the current status of data assimilation in atmospheric chemistry models with a particular focus on future prospects for data assimilation in CCMM. We first review the methods available for data assimilation in atmospheric models, including variational methods, ensemble Kalman filters, and hybrid methods. Next, we review past applications that have included chemical data assimilation in chemical transport models (CTM) and in CCMM. Observational data sets available for chemical data assimilation are described, including surface data, surface-based remote sensing, airborne data, and satellite data. Several case studies of chemical data assimilation in CCMM are presented to highlight the benefits obtained by assimilating chemical data in CCMM. A case study of data assimilation to constrain emissions is also presented. There are few examples to date of joint meteorological and chemical data assimilation in CCMM and potential difficulties associated with data assimilation in CCMM are discussed. As the number of variables being assimilated increases, it is essential to characterize correctly the errors; in particular, the specification of error cross-correlations may be problematic. In some cases, offline diagnostics are necessary to ensure that data assimilation can truly improve model performance. However, the main challenge is likely to be the paucity of chemical data available for assimilation in CCMM.
Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China
Copernicus GmbH - Tập 16 Số 5 - Trang 3369-3382
Xuekun Fang, Min Shao, A. Stohl, Qiang Zhang, Junyu Zheng, Hai Guo, Chen Wang, Ming Wang, Jiamin Ou, Rona L. Thompson, Ronald G. Prinn
Abstract. Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and toluene emissions in the PRD and HK using atmospheric measurement data from a rural site in the area, Heshan, an atmospheric transport model, and an inverse modeling method. The model simulations captured the measured mixing ratios during most pollution episodes. For the PRD and HK, the benzene emissions estimated in this study for 2010 were 44 (12–75) and 5 (2–7) Gg yr−1 for the PRD and HK, respectively, and the toluene emissions were 131 (44–218) and 6 (2–9) Gg yr−1, respectively. Temporal and spatial differences between the inversion estimate and four different bottom-up emission estimates are discussed, and it is proposed that more observations at different sites are urgently needed to better constrain benzene and toluene (and other air pollutant) emissions in the PRD and HK in the future.
Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions
Copernicus GmbH - Tập 11 Số 24 - Trang 12901-12916
Xiao Tang, Jia Zhu, Zhenyu Wang, Alex Gbaguidi
Abstract. In order to improve the surface ozone forecast over Beijing and surrounding regions, data assimilation method integrated into a high-resolution regional air quality model and a regional air quality monitoring network are employed. Several advanced data assimilation strategies based on ensemble Kalman filter are designed to adjust O3 initial conditions, NOx initial conditions and emissions, VOCs initial conditions and emissions separately or jointly through assimilating ozone observations. As a result, adjusting precursor initial conditions demonstrates potential improvement of the 1-h ozone forecast almost as great as shown by adjusting precursor emissions. Nevertheless, either adjusting precursor initial conditions or emissions show deficiency in improving the short-term ozone forecast at suburban areas. Adjusting ozone initial values brings significant improvement to the 1-h ozone forecast, and its limitations lie in the difficulty in improving the 1-h forecast at some urban site. A simultaneous adjustment of the above five variables is found to be able to reduce these limitations and display an overall better performance in improving both the 1-h and 24-h ozone forecast over these areas. The root mean square errors of 1-h ozone forecast at urban sites and suburban sites decrease by 51% and 58% respectively compared with those in free run. Through these experiments, we found that assimilating local ozone observations is determinant for ozone forecast over the observational area, while assimilating remote ozone observations could reduce the uncertainty in regional transport ozone.
High-resolution mapping of vehicle emissions of atmospheric pollutants based on large-scale, real-world traffic datasets
Copernicus GmbH - Tập 19 Số 13 - Trang 8831-8843
Daoyuan Yang, Shaojun Zhang, Tianlin Niu, Yunjie Wang, Honglei Xu, K. Max Zhang, Ye Wu
Abstract. On-road vehicle emissions are a major contributor to elevated air pollution levels in populous metropolitan areas. We developed a link-level emissions inventory of vehicular pollutants, called EMBEV-Link (Link-level Emission factor Model for the BEijing Vehicle fleet), based on multiple datasets extracted from the extensive road traffic monitoring network that covers the entire municipality of Beijing, China (16 400 km2). We employed the EMBEV-Link model under various traffic scenarios to capture the significant variability in vehicle emissions, temporally and spatially, due to the real-world traffic dynamics and the traffic restrictions implemented by the local government. The results revealed high carbon monoxide (CO) and total hydrocarbon (THC) emissions in the urban area (i.e., within the Fifth Ring Road) and during rush hours, both associated with the passenger vehicle traffic. By contrast, considerable fractions of nitrogen oxides (NOx), fine particulate matter (PM2.5) and black carbon (BC) emissions were present beyond the urban area, as heavy-duty trucks (HDTs) were not allowed to drive through the urban area during daytime. The EMBEV-Link model indicates that nonlocal HDTs could account for 29 % and 38 % of estimated total on-road emissions of NOx and PM2.5, which were ignored in previous conventional emission inventories. We further combined the EMBEV-Link emission inventory and a computationally efficient dispersion model, RapidAir®, to simulate vehicular NOx concentrations at fine resolutions (10 m × 10 m in the entire municipality and 1 m × 1 m in the hotspots). The simulated results indicated a close agreement with ground observations and captured sharp concentration gradients from line sources to ambient areas. During the nighttime when the HDT traffic restrictions are lifted, HDTs could be responsible for approximately 10 µg m−3 of NOx in the urban area. The uncertainties of conventional top-down allocation methods, which were widely used to enhance the spatial resolution of vehicle emissions, are also discussed by comparison with the EMBEV-Link emission inventory.
Inverse modelling of CH<sub>4</sub> emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY
Copernicus GmbH - Tập 15 Số 1 - Trang 113-133
Mihai Alexe, P. Bergamaschi, Arjo Segers, R. G. Detmers, A. Butz, Otto Hasekamp, Sandrine Guerlet, Robert J. Parker, Hartmut Boesch, Christian Frankenberg, R. A. Scheepmaker, E. J. Dlugokencky, Colm Sweeney, Steven C. Wofsy, E. A. Kort
Abstract. At the beginning of 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations–Fourier Transform Spectrometer (TANSO-FTS) instrument on board the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent {methane (CH4) retrievals} were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument on board the ENVironmental SATellite (ENVISAT). The GOSAT and SCIAMACHY XCH4 retrievals can be compared during the period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modelling system. In addition to satellite data, high-accuracy measurements from the Cooperative Air Sampling Network of the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) are used, providing strong constraints on the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. The GOSAT-based inversions show significant reductions in the root mean square (rms) difference between retrieved and modelled XCH4, and require much smaller bias corrections compared to the inversion using SCIAMACHY retrievals, reflecting the higher precision and relative accuracy of the GOSAT XCH4. Despite the large differences between the GOSAT and SCIAMACHY retrievals, 2-year average emission maps show overall good agreement among all satellite-based inversions, with consistent flux adjustment patterns, particularly across equatorial Africa and North America. Over North America, the satellite inversions result in a significant redistribution of CH4 emissions from North-East to South-Central United States. This result is consistent with recent independent studies suggesting a systematic underestimation of CH4 emissions from North American fossil fuel sources in bottom-up inventories, likely related to natural gas production facilities. Furthermore, all four satellite inversions yield lower CH4 fluxes across the Congo basin compared to the NOAA-only scenario, but higher emissions across tropical East Africa. The GOSAT and SCIAMACHY inversions show similar performance when validated against independent shipboard and aircraft observations, and XCH4 retrievals available from the Total Carbon Column Observing Network (TCCON).
High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US
Copernicus GmbH - Tập 18 Số 8 - Trang 5483-5497
Jennifer Kaiser, Daniel J. Jacob, Lei Zhu, Katherine R. Travis, Jenny A. Fisher, Gonzalo González Abad, Lin Zhang, Xuesong Zhang, Alan Fried, J. D. Crounse, Jason M. St. Clair, Armin Wisthaler
Abstract. Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. “Bottom-up” isoprene emission inventories used in atmospheric models are based on limited vegetation information and uncertain land cover data, leading to potentially large errors. Satellite observations of atmospheric formaldehyde (HCHO), a high-yield isoprene oxidation product, provide “top-down” information to evaluate isoprene emission inventories through inverse analyses. Past inverse analyses have however been hampered by uncertainty in the HCHO satellite data, uncertainty in the time- and NOx-dependent yield of HCHO from isoprene oxidation, and coarse resolution of the atmospheric models used for the inversion. Here we demonstrate the ability to use HCHO satellite data from OMI in a high-resolution inversion to constrain isoprene emissions on ecosystem-relevant scales. The inversion uses the adjoint of the GEOS-Chem chemical transport model at 0.25∘ × 0.3125∘ horizontal resolution to interpret observations over the southeast US in August–September 2013. It takes advantage of concurrent NASA SEAC4RS aircraft observations of isoprene and its oxidation products including HCHO to validate the OMI HCHO data over the region, test the GEOS-Chem isoprene oxidation mechanism and NOx environment, and independently evaluate the inversion. This evaluation shows in particular that local model errors in NOx concentrations propagate to biases in inferring isoprene emissions from HCHO data. It is thus essential to correct model NOx biases, which was done here using SEAC4RS observations but can be done more generally using satellite NO2 data concurrently with HCHO. We find in our inversion that isoprene emissions from the widely used MEGAN v2.1 inventory are biased high over the southeast US by 40 % on average, although the broad-scale distributions are correct including maximum emissions in Arkansas/Louisiana and high base emission factors in the oak-covered Ozarks of southeast Missouri. A particularly large discrepancy is in the Edwards Plateau of central Texas where MEGAN v2.1 is too high by a factor of 3, possibly reflecting errors in land cover. The lower isoprene emissions inferred from our inversion, when implemented into GEOS-Chem, decrease surface ozone over the southeast US by 1–3 ppb and decrease the isoprene contribution to organic aerosol from 40 to 20 %.
Long-term particulate matter modeling for health effect studies in California – Part 1: Model performance on temporal and spatial variations
Copernicus GmbH - Tập 15 Số 6 - Trang 3445-3461
Jianlin Hu, Hongliang Zhang, Qi Ying, Shu‐Hua Chen, François Vandenberghe, Michael J. Kleeman
Abstract. For the first time, a ~ decadal (9 years from 2000 to 2008) air quality model simulation with 4 km horizontal resolution over populated regions and daily time resolution has been conducted for California to provide air quality data for health effect studies. Model predictions are compared to measurements to evaluate the accuracy of the simulation with an emphasis on spatial and temporal variations that could be used in epidemiology studies. Better model performance is found at longer averaging times, suggesting that model results with averaging times ≥ 1 month should be the first to be considered in epidemiological studies. The UCD/CIT model predicts spatial and temporal variations in the concentrations of O3, PM2.5, elemental carbon (EC), organic carbon (OC), nitrate, and ammonium that meet standard modeling performance criteria when compared to monthly-averaged measurements. Predicted sulfate concentrations do not meet target performance metrics due to missing sulfur sources in the emissions. Predicted seasonal and annual variations of PM2.5, EC, OC, nitrate, and ammonium have mean fractional biases that meet the model performance criteria in 95, 100, 71, 73, and 92% of the simulated months, respectively. The base data set provides an improvement for predicted population exposure to PM concentrations in California compared to exposures estimated by central site monitors operated 1 day out of every 3 days at a few urban locations. Uncertainties in the model predictions arise from several issues. Incomplete understanding of secondary organic aerosol formation mechanisms leads to OC bias in the model results in summertime but does not affect OC predictions in winter when concentrations are typically highest. The CO and NO (species dominated by mobile emissions) results reveal temporal and spatial uncertainties associated with the mobile emissions generated by the EMFAC 2007 model. The WRF model tends to overpredict wind speed during stagnation events, leading to underpredictions of high PM concentrations, usually in winter months. The WRF model also generally underpredicts relative humidity, resulting in less particulate nitrate formation, especially during winter months. These limitations must be recognized when using data in health studies. All model results included in the current manuscript can be downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/ .
Satellite observations of atmospheric methane and their value for quantifying methane emissions
Copernicus GmbH - Tập 16 Số 22 - Trang 14371-14396
Daniel Jacob, Alexander J. Turner, Joannes D. Maasakkers, Jian‐Xiong Sheng, Kang Sun, Xiong Liu, K. Chance, Ilse Aben, Jason McKeever, Christian Frankenberg
Abstract. Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources. Atmospheric methane has been measured continuously from space since 2003, and new instruments are planned for launch in the near future that will greatly expand the capabilities of space-based observations. We review the value of current, future, and proposed satellite observations to better quantify and understand methane emissions through inverse analyses, from the global scale down to the scale of point sources and in combination with suborbital (surface and aircraft) data. Current global observations from Greenhouse Gases Observing Satellite (GOSAT) are of high quality but have sparse spatial coverage. They can quantify methane emissions on a regional scale (100–1000 km) through multiyear averaging. The Tropospheric Monitoring Instrument (TROPOMI), to be launched in 2017, is expected to quantify daily emissions on the regional scale and will also effectively detect large point sources. A different observing strategy by GHGSat (launched in June 2016) is to target limited viewing domains with very fine pixel resolution in order to detect a wide range of methane point sources. Geostationary observation of methane, still in the proposal stage, will have the unique capability of mapping source regions with high resolution, detecting transient "super-emitter" point sources and resolving diurnal variation of emissions from sources such as wetlands and manure. Exploiting these rapidly expanding satellite measurement capabilities to quantify methane emissions requires a parallel effort to construct high-quality spatially and sectorally resolved emission inventories. Partnership between top-down inverse analyses of atmospheric data and bottom-up construction of emission inventories is crucial to better understanding methane emission processes and subsequently informing climate policy.
New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes
Copernicus GmbH - Tập 19 Số 21 - Trang 13569-13579
H. Worden, A. Anthony Bloom, John R. Worden, Zhe Jiang, Eloïse A. Marais, Trissevgeni Stavrakou, Benjamin Gaubert, Forrest Lacey
Abstract. Biogenic non-methane volatile organic compounds (NMVOCs) emitted from vegetation are a primary source for the chemical production of carbon monoxide (CO) in the atmosphere, and these biogenic emissions account for about 18 % of the global CO burden. Partitioning CO fluxes to different source types in top-down inversion methods is challenging; typically a simple scaling of the posterior flux to prior flux values for fossil fuel, biogenic and biomass burning sources is used. Here we show top-down estimates of biogenic CO fluxes using a Bayesian inference approach, which explicitly accounts for both posterior and a priori CO flux uncertainties. This approach re-partitions CO fluxes following inversion of Measurements Of Pollution In The Troposphere (MOPITT) CO observations with the GEOS-Chem model, a global chemical transport model driven by assimilated meteorology from the NASA Goddard Earth Observing System (GEOS). We compare these results to the prior information for CO used to represent biogenic NMVOCs from GEOS-Chem, which uses the Model of Emissions of Gases and Aerosols from Nature (MEGAN) for biogenic emissions. We evaluate the a posteriori biogenic CO fluxes against top-down estimates of isoprene fluxes using Ozone Monitoring Instrument (OMI) formaldehyde observations. We find similar seasonality and spatial consistency in the posterior CO and top-down isoprene estimates globally. For the African savanna region, both top-down CO and isoprene seasonality vary significantly from the MEGAN a priori inventory. This method for estimating biogenic sources of CO will provide an independent constraint on modeled biogenic emissions and has the potential for diagnosing decadal-scale changes in emissions due to land-use change and climate variability.
Tổng số: 143   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 15