Copernicus GmbH

Công bố khoa học tiêu biểu

Sắp xếp:  
An overview of snow photochemistry: evidence, mechanisms and impacts
Copernicus GmbH - Tập 7 Số 16 - Trang 4329-4373
Amanda M. Grannas, A. E. Jones, Jack E. Dibb, Markus Ammann, Cort Anastasio, H. J. Beine, Michael Bergin, J. W. Bottenheim, C. S. Boxe, G. D. Carver, G. Chen, J. H. Crawford, Florent Dominé, M. M. Frey, Marcelo I. Guzmán, Dwayne E. Heard, Detlev Helmig, Michael R. Hoffmann, R. E. Honrath, L. G. Huey, M. A. Hutterli, Hans‐Werner Jacobi, Petr Klán, B. L. Lefer, John McConnell, J. M. C. Plane, Rolf Sander, Joël Savarino, P. B. Shepson, William R. Simpson, John R. Sodeau, R. von Glasow, Rolf Weller, Eric Wolff, Tong Zhu
Abstract. It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3–4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
A microphysics guide to cirrus clouds – Part 1: Cirrus types
Copernicus GmbH - Tập 16 Số 5 - Trang 3463-3483
Martina Krämer, Christian Rolf, Anna Luebke, Armin Afchine, Nicole Spelten, Anja Costa, Jessica Meyer, Martin Zöger, J. B. Smith, R. L. Herman, Bernhard Buchholz, Volker Ebert, Darrel Baumgardner, Stephan Borrmann, Marcus Klingebiel, L. M. Avallone
Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations Nice. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low- and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.
Ice water content of Arctic, midlatitude, and tropical cirrus – Part 2: Extension of the database and new statistical analysis
Copernicus GmbH - Tập 13 Số 13 - Trang 6447-6459
Anna Luebke, L. M. Avallone, Volker Ebert, J. Meyer, Christian Rolf, Martina Krämer
Abstract. Ice clouds are known to be major contributors to radiative forcing in the Earth's atmosphere, yet describing their microphysical properties in climate models remains challenging. Among these properties, the ice water content (IWC) of cirrus clouds is of particular interest both because it is measurable and because it can be directly related to a number of other radiatively important variables such as extinction and effective radius. This study expands upon the work of Schiller et al. (2008), extending a climatology of IWC by combining datasets from several European and US airborne campaigns and ground-based lidar measurements over Jülich, Germany. The relationship between IWC and temperature is further investigated using the new merged dataset and probability distribution functions (PDFs). A PDF-based formulation allows for representation of not only the mean values of IWC, but also the variability of IWC within a temperature band. The IWC-PDFs are observed to be bimodal over the whole cirrus temperature range. This bimodality is also found in ice crystal number PDFs and might be attributed to different cirrus formation mechanisms such as heterogeneous and homogeneous freezing.
The origin of midlatitude ice clouds and the resulting influence on their microphysical properties
Copernicus GmbH - Tập 16 Số 9 - Trang 5793-5809
Anna Luebke, Armin Afchine, Anja Costa, Jens‐Uwe Grooß, Jessica Meyer, Christian Rolf, Nicole Spelten, L. M. Avallone, Darrel Baumgardner, Martina Krämer
Abstract. The radiative role of ice clouds in the atmosphere is known to be important, but uncertainties remain concerning the magnitude and net effects. However, through measurements of the microphysical properties of cirrus clouds, we can better characterize them, which can ultimately allow for their radiative properties to be more accurately ascertained. Recently, two types of cirrus clouds differing by formation mechanism and microphysical properties have been classified – in situ and liquid origin cirrus. In this study, we present observational evidence to show that two distinct types of cirrus do exist. Airborne, in situ measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided according to their origin type. The key features that set liquid origin cirrus apart from the in situ origin cirrus are higher frequencies of high IWC ( > 100 ppmv), higher Nice values, and larger ice crystals. A vertical distribution of Nice shows that the in situ origin cirrus clouds exhibit a median value of around 0.1 cm−3, while the liquid origin concentrations are slightly, but notably higher. The median sizes of the crystals contributing the most mass are less than 200 µm for in situ origin cirrus, with some of the largest crystals reaching 550 µm in size. The liquid origin cirrus, on the other hand, were observed to have median diameters greater than 200 µm, and crystals that were up to 750 µm. An examination of these characteristics in relation to each other and their relationship to temperature provides strong evidence that these differences arise from the dynamics and conditions in which the ice crystals formed. Additionally, the existence of these two groups in cirrus cloud populations may explain why a bimodal distribution in the IWC-temperature relationship has been observed. We hypothesize that the low IWC mode is the result of in situ origin cirrus and the high IWC mode is the result of liquid origin cirrus.
Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest
Copernicus GmbH - Tập 12 Số 3 - Trang 1367-1376
Yuzo Miyazaki, Pingqing Fu, Kimitaka Kawamura, Yasuko Mizoguchi, Katsumi Yamanoi
Abstract. To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC) aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a deciduous forest in northern Japan during 2009–2010. Stable carbon isotopic composition of WSOC (δ13CWSOC) in total suspended particulate matter (TSP) exhibited a distinct seasonal cycle, with lower values from June through September (−25.5±0.5 ‰). This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF) analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs) dominated accounted for ~40 % of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs) made similar contributions (~57 %) to the WSOC near the forest floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA) maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the forest floor. Together with the similar vertical gradients found for WSOC and δ13CWSOC as well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of WSOC in TSP within a forest canopy at the study site.
Particulate matter, air quality and climate: lessons learned and future needs
Copernicus GmbH - Tập 15 Số 14 - Trang 8217-8299
S. Fuzzi, Urs Baltensperger, K. S. Carslaw, Stefano Decesari, Hugo Denier van der Gon, M. C. Facchini, D. Fowler, Ilan Koren, B. Langford, Ulrike Lohmann, Eiko Nemitz, Spyros Ν. Pandis, Ilona Riipinen, Yinon Rudich, Martijn Schaap, Jay G. Slowik, D. V. Spracklen, E. Vignati, Martin Wild, M. L. Williams, Stefania Gilardoni
Abstract. The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500–2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate–aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects of PM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.
Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region
Copernicus GmbH - Tập 11 Số 15 - Trang 8215-8230
Chandra Mouli Pavuluri, Kimitaka Kawamura, Shankar G. Aggarwal, T. Swaminathan
Abstract. To better characterize the tropical aerosols in Indian region, PM10 samples collected from Chennai, India (13.04° N; 80.17° E) were analyzed for carbonaceous and water-soluble ionic components. Concentration ranges of elemental carbon (EC) and organic carbon (OC) were 2.4–14 μg m−3 (ave. 6.5 μg m−3) and 3.2–15.6 μg m−3 (ave. 9.1 μg m−3) in winter samples whereas they were 1.1–2.5 μg m−3 (ave. 1.6 μg m−3) and 4.1–17.6 μg m−3 (ave. 9.7 μg m−3) in summer samples, respectively. Concentration of secondary organic carbon (SOC) retrieved from EC-tracer method was 4.6±2.8 μg m−3 in winter and 4.3±2.8 μg m−3 in summer. OC accounted for 38.5±14 % (n = 49) of combined concentrations of carbonaceous and ionic components in PM10. We also found that OC concentrations are generally higher than those of SO42− (8.8±2.5 μg m−3 and 4.1±2.7 μg m−3 in winter and summer, respectively), which was the most abundant ionic species (57 %) followed by NH4+ (15 %) >NO3−>Cl−>K+>Na+> Ca2+>MSA−>Mg2+. The mass fractions of EC, organic matter (OM) and ionic species varied seasonally, following the air mass trajectories and corresponding source strength. Based on mass concentration ratios of selected components and relations of EC and OC to marker species, we found that biofuel/biomass burning is a major source of atmospheric aerosols in South and Southeast Asia. The high concentrations of SOC and WSOC/OC ratios (ave. 0.45; n = 49) as well as good correlations between SOC and WSOC suggest that the secondary production of organic aerosols during long-range atmospheric transport is also significant in this region. This study provides the baseline data of carbonaceous aerosols for southern part of the Indian subcontinent.
Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;O&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;, O&amp;lt;sub&amp;gt;3&amp;lt;/sub&amp;gt; and iron catalysis
Copernicus GmbH - Tập 12 Số 1 - Trang 407-423
Eliza Harris, Baerbel Sinha, P. Höppe, John N. Crowley, Shuhei Ono, Stephen F. Foley
Abstract. The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007)−((4±5)×10−5) T(°C). The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019)−((8.7±3.5) ×10−5)T(°C). The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV) in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043) at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.
Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US
Copernicus GmbH - Tập 15 Số 24 - Trang 13915-13938
J. B. Gilman, B. M. Lerner, W. C. Kuster, P. D. Goldan, C. Warneke, P. R. Veres, J. M. Roberts, J. A. de Gouw, I. R. Burling, R. J. Yokelson
Abstract. A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70–90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57–68 % of the VOC mass emitted, 41–54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde were the dominant potential SOA precursors. In addition, ambient air measurements of emissions from the Fourmile Canyon Fire that affected Boulder, Colorado in September 2010 allowed us to investigate biomass burning (BB) emissions in the presence of other VOC sources (i.e., urban and biogenic emissions) and identify several promising BB markers including benzofuran, 2-furaldehyde, 2-methylfuran, furan, and benzonitrile.
Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing
Copernicus GmbH - Tập 13 Số 9 - Trang 4667-4680
Shankar G. Aggarwal, Kimitaka Kawamura, G. S. Umarji, Henning Finkenzeller, Rashmi S. Patil, P. K. Gupta
Abstract. To better understand the sources of PM10 samples in Mumbai, India, aerosol chemical composition, i.e., total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied together with specific markers such as methanesulfonate (MSA), oxalic acid (C2), azelaic acid (C9), and levoglucosan. The results revealed that biofuel/biomass burning and fossil fuel combustion are the major sources of the Mumbai aerosols. Nitrogen-isotopic (δ15N) composition of aerosol total nitrogen, which ranged from 18.1 to 25.4‰, also suggests that biofuel/biomass burning is a predominate source in both the summer and winter seasons. Aerosol mass concentrations of major species increased 3–4 times in winter compared to summer, indicating enhanced emission from these sources in the winter season. Photochemical production tracers, C2 diacid and nssSO42−, do not show diurnal changes. Concentrations of C2 diacid and WSOC show a strong correlation (r2 = 0.95). In addition, WSOC to OC (or TC) ratios remain almost constant for daytime (0.37 &amp;pm; 0.06 (0.28 &amp;pm; 0.04)) and nighttime (0.38 &amp;pm; 0.07 (0.28 &amp;pm; 0.06)), suggesting that mixing of fresh secondary organic aerosols is not significant and the Mumbai aerosols are photochemically well processed. Concentrations of MSA and C9 diacid present a positive correlation (r2 = 0.75), indicating a marine influence on Mumbai aerosols in addition to local/regional influence. Backward air mass trajectory analyses further suggested that the Mumbai aerosols are largely influenced by long-range continental and regional transport. Stable C-isotopic ratios (δ13C) of TC ranged from −27.0 to −25.4‰, with slightly lower average (−26.5 &amp;pm; 0.3‰) in summer than in winter (−25.9 &amp;pm; 0.3‰). Positive correlation between WSOC/TC ratios and δ13C values suggested that the relative increment in 13C of wintertime TC may be caused by prolonged photochemical processing of organic aerosols in this season. This study suggests that in winter, the tropical aerosols are more aged due to longer residence time in the atmosphere than in summer aerosols. However, these conclusions are based on the analysis of a limited number of samples (n=25) and more information on this topic may be needed from other similar coastal sites in future.
Tổng số: 389   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 39