
Conservation Biology
SCIE-ISI SCOPUS (1987-2023)
1523-1739
0888-8892
Anh Quốc
Cơ quản chủ quản: Wiley-Blackwell Publishing Ltd , WILEY
Các bài báo tiêu biểu
Hydrologic regimes play a major role in determining the biotic composition, structure, and function of aquatic, wetland, and riparian ecosystems. But human land and water uses are substantially altering hydrologic regimes around the world. Improved quantitative evaluations of human‐induced hydrologic changes are needed to advance research on the biotic implications of hydrologic alteration and to support ecosystem management and restoration plans. We propose a method for assessing the degree of hydrologic alteration attributable to human influence within an ecosystem. This method, referred to as the “Indicators of Hydrologic Alteration,” is based upon an analysis of hydrologic data available either from existing measurement points within an ecosystem (such as at stream gauges or wells) or model‐generated data. We use 32 parameters, organized into five groups, to statistically characterize hydrologic variation within each year. These 32 parameters provide information on ecologically significant features of surface and ground water regimes influencing aquatic, wetland, and riparian ecosystems. We then assess the hydrologic perturbations associated with activities such as dam operations, flow diversion, groundwater pumping, or intensive land‐use conversion by comparing measures of central tendency and dispersion for each parameter between user‐defined “pre‐impact” and “post‐impact” time frames, generating 64 Indicators of Hydrologic Alteration. This method is intended for use with other ecosystem metrics in inventories of ecosystem integrity, in planning ecosystem management activities, and in setting and measuring progress toward conservation or restoration goals.
As the human population grows and natural resources decline, there is pressure to apply increasing levels of top‐down, command‐and‐control management to natural resources. This is manifested in attempts to control ecosystems and in socioeconomic institutions that respond to erratic or surprising ecosystem behavior with more control. Command and control, however, usually results in unforeseen consequences for both natural ecosystems and human welfare in the form of collapsing resources, social and economic strife, and losses of biological diversity. We describe the “pathology of natural resource management,” defined as a
We discuss methodological issues concerning the degree of substitutability of manufactured for natural capital, quantifying ecosystem services and natural capital, and the role of the discount rate in valuing natural capital. We differentiate the concepts of growth (material increase in size) and development (improvement in organization without size change). Given these definitions, growth cannot the sustainable indefinitely on a finite planet. Development may be sustainable, but even this aspect of change may have some limits. One problem is that current measures of economic well‐being at the macro level (i.e., the Gross National Product) measure mainly growth, or at best conflate growth and development. This urgently requires revision.
Finally, we suggest some principles of sustainable development and describe why maintaining natural capital stocks is a prudent and achievable policy for insuring sustainable development. There is disagreement between technological optimists (who see technical progress as eliminating all resource constraints to growth and development) and technological skeptics (who do not see as much scope for this approach and fear irreversible use of resources and damage to natural capital). By maintaining natural capital stocks (preferably by using a natural capital depletion tax), we can satisfy both the skeptics (since resources will be conserved for future generations) and the optimists (since this will raise the price of natural capital depletion and more rapidly induce the technical change they predict).