This paper proposes a three-dimensional meshfree method for arbitrary crack initiation and propagation that ensures crack path continuity for non-linear material models and cohesive laws. The method is based on a local partition of unity. An extrinsic enrichment of the meshfree shape functions is used with discontinuous and near-front branch functions to close the crack front and improve accuracy. The crack is hereby modeled as a jump in the displacement field. The initiation and propagation of a crack is determined by the loss of hyperbolicity or the loss of material stability criterion. The method is applied to several static, quasi-static and dynamic crack problems. The numerical results very precisely replicate available experimental and analytical results.
Peridynamic models are derived by assuming that a material point is located in the bulk. Near a surface or boundary, material points do not have a full non-local neighborhood. This leads to effective material properties near the surface of a peridynamic model to be slightly different from those in the bulk. A number of methods/algorithms have been proposed recently for correcting this peridynamic surface effect. In this study, we investigate the efficacy and computational cost of peridynamic surface correction methods for elasticity and fracture. We provide practical suggestions for reducing the peridynamic surface effect.